目录

AI人工智能之机器学习sklearn-数据预处理和划分数据集

1、概要

本篇学习AI人工智能之机器学习sklearn数据预处理和划分数据集,从代码层面讲述如何进行数据的预处理和数据集划分。

2、简介

本片讲述数据预处理的标准化处理、归一化处理,以常用的两个类为例

  • 标准化处理类 StandardScaler
  • 归一化处理类 MinMaxScaler

在数据处理方面,使用train_test_split函数处理列表数据集为例

3、 数据预处理和数据集划分

3.1 安装依赖

python安装机器学习库: pip install scikit-learn

3.2、定义数据集
python 复制代码
from sklearn.feature_extraction import text, DictVectorizer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split

# 示例数据集合,是一个经过处理的列表数据  X
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
print("data:", X)

# 示例打标的数据,
y = [0, 1, 0, 1]
print("tag", y)

运行上述代码,您将得到如下输出:

复制代码
data: [[1, 2], [3, 4], [5, 6], [7, 8]]
tag [0, 1, 0, 1]
3.3 数据预处理 StandardScaler、MinMaxScaler
python 复制代码
# 标准化处理
ss = StandardScaler()
# 将特征缩放到零均值和单位方差
X = ss.fit_transform(X)
X

运行上述代码,您将得到如下输出:

复制代码
array([[-1.34164079, -1.34164079],
       [-0.4472136 , -0.4472136 ],
       [ 0.4472136 ,  0.4472136 ],
       [ 1.34164079,  1.34164079]])
python 复制代码
# 归一化处理
mms = MinMaxScaler()
# 将特征缩放到一个范围(如[0,1])
X = mms.fit_transform(X) 
X

运行上述代码,您将得到如下输出:

复制代码
array([[0.        , 0.        ],
       [0.33333333, 0.33333333],
       [0.66666667, 0.66666667],
       [1.        , 1.        ]])
3.4 划分数据集 train_test_split
python 复制代码
# 划分训练集 _train, 测试集 _test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
print(f"训练集: {X_train} - {y_train}")
print(f"测试集: {X_test} - {y_test}")

运行上述代码,您将得到如下输出:

复制代码
训练集: [[1.         1.        ]
 [0.         0.        ]
 [0.66666667 0.66666667]] - [1, 0, 0]
测试集: [[0.33333333 0.33333333]] - [1]

4、 总结

本篇以自定义数据集为例,从代码视角讲述如何对数据集进行预处理和数据集的划分。

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
tinker1 分钟前
Agentic APP 技术栈总结- SearXNG
人工智能
fc&&fl4 分钟前
AI爬虫?爬!
人工智能·爬虫·python
zidea5 分钟前
我和我的 AI Agent(2)工具模块设计上花了不少心思,实现了 AI Agent 从使用工具到创建工具的进化
人工智能·python·程序员
jackzhangpython5 分钟前
评测系统的重要性
人工智能
果冻人工智能6 分钟前
纠错:LLMs 并不是在预测下一个词
人工智能
码界筑梦坊10 分钟前
基于FLask的重庆市造价工程信息数据可视化分析系统
python·信息可视化·数据分析·flask·毕业设计
Bruce_Liuxiaowei13 分钟前
基于Flask的Windows命令大全Web应用技术解析与架构设计
前端·windows·python·flask
用户776601166649716 分钟前
【AI编程学习之Python】第五天:Python的变量和常量
python
javastart27 分钟前
深入解析大型应用架构:以dify为例进行分析
人工智能·架构·开源
Niuguangshuo30 分钟前
Python 设计模式:迭代模式
java·python·设计模式