AI人工智能之机器学习sklearn-数据预处理和划分数据集

1、概要

本篇学习AI人工智能之机器学习sklearn数据预处理和划分数据集,从代码层面讲述如何进行数据的预处理和数据集划分。

2、简介

本片讲述数据预处理的标准化处理、归一化处理,以常用的两个类为例

  • 标准化处理类 StandardScaler
  • 归一化处理类 MinMaxScaler

在数据处理方面,使用train_test_split函数处理列表数据集为例

3、 数据预处理和数据集划分

3.1 安装依赖

python安装机器学习库: pip install scikit-learn

3.2、定义数据集
python 复制代码
from sklearn.feature_extraction import text, DictVectorizer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split

# 示例数据集合,是一个经过处理的列表数据  X
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
print("data:", X)

# 示例打标的数据,
y = [0, 1, 0, 1]
print("tag", y)

运行上述代码,您将得到如下输出:

复制代码
data: [[1, 2], [3, 4], [5, 6], [7, 8]]
tag [0, 1, 0, 1]
3.3 数据预处理 StandardScaler、MinMaxScaler
python 复制代码
# 标准化处理
ss = StandardScaler()
# 将特征缩放到零均值和单位方差
X = ss.fit_transform(X)
X

运行上述代码,您将得到如下输出:

复制代码
array([[-1.34164079, -1.34164079],
       [-0.4472136 , -0.4472136 ],
       [ 0.4472136 ,  0.4472136 ],
       [ 1.34164079,  1.34164079]])
python 复制代码
# 归一化处理
mms = MinMaxScaler()
# 将特征缩放到一个范围(如[0,1])
X = mms.fit_transform(X) 
X

运行上述代码,您将得到如下输出:

复制代码
array([[0.        , 0.        ],
       [0.33333333, 0.33333333],
       [0.66666667, 0.66666667],
       [1.        , 1.        ]])
3.4 划分数据集 train_test_split
python 复制代码
# 划分训练集 _train, 测试集 _test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
print(f"训练集: {X_train} - {y_train}")
print(f"测试集: {X_test} - {y_test}")

运行上述代码,您将得到如下输出:

复制代码
训练集: [[1.         1.        ]
 [0.         0.        ]
 [0.66666667 0.66666667]] - [1, 0, 0]
测试集: [[0.33333333 0.33333333]] - [1]

4、 总结

本篇以自定义数据集为例,从代码视角讲述如何对数据集进行预处理和数据集的划分。

相关推荐
冷雨夜中漫步3 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
33三 三like3 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a3 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
郝学胜-神的一滴3 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再3 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
腾讯云开发者4 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗4 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
喵手5 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
Coder_Boy_5 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习