AI人工智能之机器学习sklearn-数据预处理和划分数据集

1、概要

本篇学习AI人工智能之机器学习sklearn数据预处理和划分数据集,从代码层面讲述如何进行数据的预处理和数据集划分。

2、简介

本片讲述数据预处理的标准化处理、归一化处理,以常用的两个类为例

  • 标准化处理类 StandardScaler
  • 归一化处理类 MinMaxScaler

在数据处理方面,使用train_test_split函数处理列表数据集为例

3、 数据预处理和数据集划分

3.1 安装依赖

python安装机器学习库: pip install scikit-learn

3.2、定义数据集
python 复制代码
from sklearn.feature_extraction import text, DictVectorizer
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split

# 示例数据集合,是一个经过处理的列表数据  X
X = [[1, 2], [3, 4], [5, 6], [7, 8]]
print("data:", X)

# 示例打标的数据,
y = [0, 1, 0, 1]
print("tag", y)

运行上述代码,您将得到如下输出:

复制代码
data: [[1, 2], [3, 4], [5, 6], [7, 8]]
tag [0, 1, 0, 1]
3.3 数据预处理 StandardScaler、MinMaxScaler
python 复制代码
# 标准化处理
ss = StandardScaler()
# 将特征缩放到零均值和单位方差
X = ss.fit_transform(X)
X

运行上述代码,您将得到如下输出:

复制代码
array([[-1.34164079, -1.34164079],
       [-0.4472136 , -0.4472136 ],
       [ 0.4472136 ,  0.4472136 ],
       [ 1.34164079,  1.34164079]])
python 复制代码
# 归一化处理
mms = MinMaxScaler()
# 将特征缩放到一个范围(如[0,1])
X = mms.fit_transform(X) 
X

运行上述代码,您将得到如下输出:

复制代码
array([[0.        , 0.        ],
       [0.33333333, 0.33333333],
       [0.66666667, 0.66666667],
       [1.        , 1.        ]])
3.4 划分数据集 train_test_split
python 复制代码
# 划分训练集 _train, 测试集 _test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
print(f"训练集: {X_train} - {y_train}")
print(f"测试集: {X_test} - {y_test}")

运行上述代码,您将得到如下输出:

复制代码
训练集: [[1.         1.        ]
 [0.         0.        ]
 [0.66666667 0.66666667]] - [1, 0, 0]
测试集: [[0.33333333 0.33333333]] - [1]

4、 总结

本篇以自定义数据集为例,从代码视角讲述如何对数据集进行预处理和数据集的划分。

相关推荐
昵称是6硬币38 分钟前
YOLO26论文精读(逐段解析)
人工智能·深度学习·yolo·目标检测·计算机视觉·yolo26
数据村的古老师2 小时前
Python数据分析实战:基于25年黄金价格数据的特征提取与算法应用【数据集可下载】
开发语言·python·数据分析
wwlsm_zql3 小时前
「赤兔」Chitu 框架深度解读(十四):核心算子优化
人工智能·1024程序员节
小王不爱笑1323 小时前
Java 核心知识点查漏补缺(一)
java·开发语言·python
闲人编程4 小时前
自动化文件管理:分类、重命名和备份
python·microsoft·分类·自动化·备份·重命名·自动化文件分类
青云交5 小时前
Java 大视界 -- Java 大数据在智能农业温室环境调控与作物生长模型构建中的应用
java·机器学习·传感器技术·数据处理·作物生长模型·智能农业·温室环境调控
Jonathan Star5 小时前
用Python轻松提取视频音频并去除静音片段
开发语言·python·音视频
浣熊-论文指导5 小时前
聚类与Transformer融合的六大创新方向
论文阅读·深度学习·机器学习·transformer·聚类
AKAMAI5 小时前
Fermyon推出全球最快边缘计算平台:WebAssembly先驱携手Akamai云驱动无服务器技术新浪潮
人工智能·云计算·边缘计算
云雾J视界6 小时前
TMS320C6000 VLIW架构并行编程实战:加速AI边缘计算推理性能
人工智能·架构·边缘计算·dsp·vliw·tms320c6000