探序基因肿瘤研究院
import scanpy as sc
>>> adata = sc.read_10x_h5('/xxx/filtered_feature_bc_matrix.h5')
/root/miniconda3/lib/python3.12/site-packages/anndata/_core/anndata.py:1756: UserWarning: Variable names are not unique. To make them unique, call `.var_names_make_unique`.
utils.warn_names_duplicates("var")
/root/miniconda3/lib/python3.12/site-packages/anndata/_core/anndata.py:1756: UserWarning: Variable names are not unique. To make them unique, call `.var_names_make_unique`.
utils.warn_names_duplicates("var")
不知道这个报错代表啥意思
>>> print(adata)
AnnData object with n_obs × n_vars = 3793 × 18085
var: 'gene_ids', 'feature_types', 'genome'
保存变量:
import pickle
with open('processed_data.pkl', 'wb') as f:
pickle.dump(adata, f)
读取变量:
import pickle
with open('processed_data.pkl', 'rb') as f:
adata = pickle.load(f)
查看adata.var:

下一步,要将基因组位置存储在 adata.var 中。 "chromosome", "start", "end"分别保存每个基因的染色体以及在该染色体上的开始和结束位置。可以使用infercnvpy.io.genomic_position_from_gtf()函数。
下载了一个Homo_sapiens.GRCh38.99.gtf.gz文件,
infercnvpy.io.genomic_position_from_gtf("Homo_sapiens.GRCh38.99.gtf.gz",adata)
出现报错信息:
INFO:root:Extracted GTF attributes: ['gene_id', 'gene_version', 'gene_name', 'gene_source', 'gene_biotype', 'transcript_id', 'transcript_version', 'transcript_name', 'transcript_source', 'transcript_biotype', 'tag', 'transcript_support_level', 'exon_number', 'exon_id', 'exon_version', 'protein_id', 'protein_version', 'ccds_id']
应该是要GENCODE版本的gtf文件?
下载infercnvpy自带的数据集:
bdata变量查看:
>>> bdata
AnnData object with n_obs × n_vars = 3000 × 55556
obs: 'age', 'sex', 'sample', 'patient', 'cell_type'
var: 'ensg', 'mito', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts', 'n_counts', 'chromosome', 'start', 'end', 'gene_id', 'gene_name'
uns: 'cell_type_colors', 'neighbors', 'umap', 'cnv'
obsm: 'X_scVI', 'X_umap', 'X_cnv'
obsp: 'connectivities', 'distances'
查看细胞注释数据:
>>> bdata.obs['cell_type']
Run
SRR10796381 T cell CD4
SRR10787713 Macrophage
SRR10785570 T cell CD4
SRR10790048 Monocyte
SRR10782528 Epithelial cell
...
SRR10782593 Fibroblast
SRR10789971 Epithelial cell
SRR10780468 Epithelial cell
SRR10779840 mDC
SRR10795768 other
Name: cell_type, Length: 3000, dtype: category
Categories (21, object): ['Alevolar cell type 1', 'Alevolar cell type 2', 'B cell', 'Ciliated', ...,
'T cell regulatory', 'mDC', 'other', 'pDC']
这种数据结构是Pandas库的DataFrame。DataFrame是Pandas库中的一种二维标签数据结构,可以看作是一种带有行和列标签的表格数据。它既有行索引,也有列索引,每列可以是不同的数据类型。DataFrame类似于电子表格或SQL表格,非常适合用于数据分析和处理。
>>> bdata.obs['cell_type'][1:3]
Run
SRR10787713 Macrophage
SRR10785570 T cell CD4
Name: cell_type, dtype: category
Categories (21, object): ['Alevolar cell type 1', 'Alevolar cell type 2', 'B cell', 'Ciliated', ...,
'T cell regulatory', 'mDC', 'other', 'pDC']
>>> bdata.obs["cell_type"].iloc[0]
'T cell CD4'
可通过bdata.obs["cell_type"].iloc[0] = "xxx" 的方式来修改细胞类型。
读取细胞名:
ind = bdata.obs["cell_type"].index
>>> print(ind)
Index(['SRR10796381', 'SRR10787713', 'SRR10785570', 'SRR10790048',
'SRR10782528', 'SRR10783499', 'SRR10782527', 'SRR10795166',
'SRR10798281', 'SRR10791041',
...
'SRR10795296', 'SRR10785910', 'SRR10779352', 'SRR10790560',
'SRR10779232', 'SRR10782593', 'SRR10789971', 'SRR10780468',
'SRR10779840', 'SRR10795768'],
dtype='object', name='Run', length=3000)
>>> ind[1:5]
Index(['SRR10787713', 'SRR10785570', 'SRR10790048', 'SRR10782528'], dtype='object', name='Run')
如何创建:
import pandas as pd
创建一个包含分类数据的DataFrame:
案例1:
df = pd.DataFrame({
'A': pd.Categorical(['apple', 'banana', 'apple', 'banana'], categories=['apple', 'banana']),
'B': pd.Categorical(['b', 'a', 'b', 'a'], categories=['b', 'a'])
})
将列的dtype设置为category
df = df.astype({'A': 'category', 'B': 'category'})
案例2:
data = {'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'City': ['New York', 'London', 'Paris']}
df = pd.DataFrame(data)
print(df)
案例3:设置行名
data = {'Column1': [1, 2, 3], 'Column2': [4, 5, 6]}
row_names = ['Row1', 'Row2', 'Row3']
df = pd.DataFrame(data, index=row_names)
或者:
df = df.reset_index(drop=True) # 重置索引,不保留旧索引作为列
df.index = row_names # 设置新的行名
print(df)
scanpy数据结构保存方法:
adata.write('annotation_data.h5ad')
;python数据结构类型:数组、列表、元组、集合、字典、堆、栈、队列、树、图等
>>> cnv.pl.chromosome_heatmap(bdata, groupby="cell_type")
/root/miniconda3/lib/python3.12/site-packages/scanpy/plotting/_utils.py:363: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown
plt.show()
参考: