分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测

分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测

目录

    • [分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测](#分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测)

分类效果

基本描述

1.Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测(Matlab完整源码和数据),运行环境Matlab2018b及以上;

2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。

3.CPO选择最佳的SVM参数c和g。

SVM模型有两个非常重要的参数C与gamma。其中 C是惩罚系数,即对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。C过大或过小,泛化能力变差 。gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。

程序设计

clike 复制代码
%%  参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数dim为2 。
% 定义优化参数的上下限,如c的范围是[0.01, 1], g的范围是[2^-5, 2^5],那么参数的下限lb=[0.01, 2^-5];参数的上限ub=[1, 2^5]。
%目标函数
fun = @getObjValue; 
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [10^-1, 1];
ub = [10^2, 2^8];

%%  参数设置
pop =6; %种群数量
maxgen=100;%最大迭代次数
%% 优化(这里主要调用函数)
c = Best_pos(1, 1);  
g = Best_pos(1, 2); 
toc
% 用优化得到c,g训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(T_train, P_train, cmd);
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/134843675

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
June`11 分钟前
专题四:综合练习( 找出所有子集的异或总和再求和)
c++·算法·深度优先·剪枝
Magnum Lehar23 分钟前
3d游戏引擎的Utilities模块实现下
c++·算法·游戏引擎
JANYI201838 分钟前
C语言易混淆知识点详解
java·c语言·算法
漠缠1 小时前
手机相册的 “智能分类” 功能
智能手机·分类·数据挖掘
绒绒毛毛雨1 小时前
广告推荐算法入门 day1 --项目选型
算法·推荐算法
越城2 小时前
数据结构中的栈与队列:原理、实现与应用
c语言·数据结构·算法
wang__123002 小时前
力扣2094题解
算法·leetcode·职场和发展
GUIQU.3 小时前
【每日一题 | 2025年5.5 ~ 5.11】搜索相关题
算法·每日一题·坚持
不知名小菜鸡.3 小时前
记录算法笔记(2025.5.13)二叉树的最大深度
笔记·算法
真的想上岸啊3 小时前
c语言第一个小游戏:贪吃蛇小游戏05
c语言·算法·链表