分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测

分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测

目录

    • [分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测](#分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测)

分类效果

基本描述

1.Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测(Matlab完整源码和数据),运行环境Matlab2018b及以上;

2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。

3.CPO选择最佳的SVM参数c和g。

SVM模型有两个非常重要的参数C与gamma。其中 C是惩罚系数,即对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。C过大或过小,泛化能力变差 。gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。

程序设计

clike 复制代码
%%  参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数dim为2 。
% 定义优化参数的上下限,如c的范围是[0.01, 1], g的范围是[2^-5, 2^5],那么参数的下限lb=[0.01, 2^-5];参数的上限ub=[1, 2^5]。
%目标函数
fun = @getObjValue; 
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [10^-1, 1];
ub = [10^2, 2^8];

%%  参数设置
pop =6; %种群数量
maxgen=100;%最大迭代次数
%% 优化(这里主要调用函数)
c = Best_pos(1, 1);  
g = Best_pos(1, 2); 
toc
% 用优化得到c,g训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(T_train, P_train, cmd);
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/134843675

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
纪元A梦13 分钟前
贪心算法应用:化工反应器调度问题详解
算法·贪心算法
深圳市快瞳科技有限公司44 分钟前
小场景大市场:猫狗识别算法在宠物智能设备中的应用
算法·计算机视觉·宠物
liulilittle1 小时前
OPENPPP2 —— IP标准校验和算法深度剖析:从原理到SSE2优化实现
网络·c++·网络协议·tcp/ip·算法·ip·通信
superlls3 小时前
(算法 哈希表)【LeetCode 349】两个数组的交集 思路笔记自留
java·数据结构·算法
机器学习之心4 小时前
PINN驱动的高阶偏微分方程求解MATLAB代码
matlab·物理信息神经网络·高阶偏微分方程
民乐团扒谱机4 小时前
逻辑回归算法干货详解:从原理到 MATLAB 可视化实现
数学建模·matlab·分类·数据挖掘·回归·逻辑回归·代码分享
田里的水稻4 小时前
C++_队列编码实例,从末端添加对象,同时把头部的对象剔除掉,中的队列长度为设置长度NUM_OBJ
java·c++·算法
纪元A梦4 小时前
贪心算法应用:保险理赔调度问题详解
算法·贪心算法
Jayden_Ruan5 小时前
C++逆向输出一个字符串(三)
开发语言·c++·算法
点云SLAM6 小时前
C++ 常见面试题汇总
java·开发语言·c++·算法·面试·内存管理