分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测

分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测

目录

    • [分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测](#分类预测 | Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测)

分类效果

基本描述

1.Matlab实现CPO-SVM冠豪猪算法优化支持向量机多特征分类预测(Matlab完整源码和数据),运行环境Matlab2018b及以上;

2.输入12个特征,输出分4类,可视化展示分类准确率,可在下载区获取数据和程序内容。

3.CPO选择最佳的SVM参数c和g。

SVM模型有两个非常重要的参数C与gamma。其中 C是惩罚系数,即对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。C过大或过小,泛化能力变差 。gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。

程序设计

clike 复制代码
%%  参数设置
% 定义优化参数的个数,在该场景中,优化参数的个数dim为2 。
% 定义优化参数的上下限,如c的范围是[0.01, 1], g的范围是[2^-5, 2^5],那么参数的下限lb=[0.01, 2^-5];参数的上限ub=[1, 2^5]。
%目标函数
fun = @getObjValue; 
% 优化参数的个数 (c、g)
dim = 2;
% 优化参数的取值下限
lb = [10^-1, 1];
ub = [10^2, 2^8];

%%  参数设置
pop =6; %种群数量
maxgen=100;%最大迭代次数
%% 优化(这里主要调用函数)
c = Best_pos(1, 1);  
g = Best_pos(1, 2); 
toc
% 用优化得到c,g训练和测试
cmd = ['-s 0 -t 2 ', '-c ', num2str(c), ' -g ', num2str(g), ' -q'];
model = libsvmtrain(T_train, P_train, cmd);
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/134843675

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
仪器科学与传感技术博士27 分钟前
python:讲懂决策树,为理解随机森林算法做准备,以示例带学习,通俗易懂,容易理解和掌握
python·算法·决策树
小指纹1 小时前
cf--思维训练
c++·算法·macos·ios·objective-c·cocoa
小指纹1 小时前
河南萌新联赛2025第(四)场【补题】
数据结构·c++·算法·macos·objective-c·cocoa·图论
菜鸟555551 小时前
河南萌新联赛2025第四场-河南大学
c++·算法·思维·河南萌新联赛
F_D_Z1 小时前
【感知机】感知机(perceptron)模型与几何解释
学习·算法·支持向量机
竹子_232 小时前
《零基础入门AI:传统机器学习进阶(从拟合概念到K-Means算法)》
人工智能·算法·机器学习
2401_831896032 小时前
机器学习(6):决策树-分类
决策树·机器学习·分类
设计师小聂!3 小时前
力扣热题100------136.只出现一次的数字
数据结构·算法·leetcode
崎岖Qiu3 小时前
leetcode643:子数组最大平均数 I(滑动窗口入门之定长滑动窗口)
java·算法·leetcode·力扣·双指针·滑动窗口
多思考少编码3 小时前
[GESP202309 四级] 2023年9月GESP C++四级上机题题解,附带讲解视频!
开发语言·c++·算法