在数据集上通过聚类实现特征降维

分享一个通过聚类算法对数据特征进行聚类从而实现降维的代码

python 复制代码
import numpy as np
from sklearn import datasets, cluster
digits = datasets.load_digits()
images = digits.images
X = np.reshape(images, (len(images), -1))
agglo = cluster.FeatureAgglomeration(n_clusters=32)
agglo.fit(X)
FeatureAgglomeration(n_clusters=32)
X_reduced = agglo.transform(X)
X_reduced.shape

以下是代码讲解:

1.导入numpy库和机器学习库的数据集、聚类算法模块

python 复制代码
import numpy as np
from sklearn import datasets, cluster

2.加载手写数字数据集

python 复制代码
digits = datasets.load_digits()

这行代码从 sklearn.datasets 模块中加载了手写数字数据集,该数据集包含8x8像素的灰度图像和对应的标签(0到9)。

3.获取图像数据

python 复制代码
images = digits.images

digits.images 是一个形状为 (1797, 8, 8) 的数组,其中 1797 是样本数量,每个样本是一个 8x8 的灰度图像。

4.将图像数据重塑为二维数组

python 复制代码
X = np.reshape(images, (len(images), -1))

这行代码将每个 8x8 的图像展平成一个长度为64的一维向量,因此 X 的形状变为 (1797, 64)。

5.创建并拟合 FeatureAgglomeration 对象

python 复制代码
agglo = cluster.FeatureAgglomeration(n_clusters=32)
agglo.fit(X)

这里创建了一个 FeatureAgglomeration 对象,指定要生成的特征数为32。然后使用 fit 方法在数据 X 上训练这个模型。

6.转换数据以减少特征维度

python 复制代码
X_reduced = agglo.transform(X)

这行代码使用训练好的 FeatureAgglomeration 模型将原始数据 X 转换为一个具有32个特征的新数据集 X_reduced。

7.查看转换后的数据形状

python 复制代码
X_reduced.shape

这行代码输出 X_reduced 的形状。由于我们指定了 n_clusters=32,所以 X_reduced 的形状应该是 (1797, 32),即有1797个样本,每个样本有32个特征。

由此将手写数字图像数据从64维降到32维,通过特征聚合的方法实现降维。

可以在自己的数据集上试试~!

相关推荐
Carl_奕然1 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
武子康4 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
少林码僧6 小时前
2.29 XGBoost、LightGBM、CatBoost对比:三大梯度提升框架选型指南
人工智能·机器学习·ai·数据挖掘·数据分析·回归
春日见6 小时前
控制算法:PP(纯跟踪)算法
linux·人工智能·驱动开发·算法·机器学习
Yeats_Liao6 小时前
MindSpore开发之路(二十六):系列总结与学习路径展望
人工智能·深度学习·学习·机器学习
gorgeous(๑>؂<๑)7 小时前
【中科院-张启超组-AAAI26】WorldRFT: 用于自动驾驶的带强化微调的潜在世界模型规划
人工智能·机器学习·自动驾驶
Golang编程笔记7 小时前
电商数据分析的未来发展路径
ai·数据挖掘·数据分析
高洁018 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
lambo mercy8 小时前
食物照片分类实战
人工智能·分类·数据挖掘
小兔崽子去哪了11 小时前
机器学习,梯度下降,拟合,正则化,混淆矩阵
python·机器学习