在数据集上通过聚类实现特征降维

分享一个通过聚类算法对数据特征进行聚类从而实现降维的代码

python 复制代码
import numpy as np
from sklearn import datasets, cluster
digits = datasets.load_digits()
images = digits.images
X = np.reshape(images, (len(images), -1))
agglo = cluster.FeatureAgglomeration(n_clusters=32)
agglo.fit(X)
FeatureAgglomeration(n_clusters=32)
X_reduced = agglo.transform(X)
X_reduced.shape

以下是代码讲解:

1.导入numpy库和机器学习库的数据集、聚类算法模块

python 复制代码
import numpy as np
from sklearn import datasets, cluster

2.加载手写数字数据集

python 复制代码
digits = datasets.load_digits()

这行代码从 sklearn.datasets 模块中加载了手写数字数据集,该数据集包含8x8像素的灰度图像和对应的标签(0到9)。

3.获取图像数据

python 复制代码
images = digits.images

digits.images 是一个形状为 (1797, 8, 8) 的数组,其中 1797 是样本数量,每个样本是一个 8x8 的灰度图像。

4.将图像数据重塑为二维数组

python 复制代码
X = np.reshape(images, (len(images), -1))

这行代码将每个 8x8 的图像展平成一个长度为64的一维向量,因此 X 的形状变为 (1797, 64)。

5.创建并拟合 FeatureAgglomeration 对象

python 复制代码
agglo = cluster.FeatureAgglomeration(n_clusters=32)
agglo.fit(X)

这里创建了一个 FeatureAgglomeration 对象,指定要生成的特征数为32。然后使用 fit 方法在数据 X 上训练这个模型。

6.转换数据以减少特征维度

python 复制代码
X_reduced = agglo.transform(X)

这行代码使用训练好的 FeatureAgglomeration 模型将原始数据 X 转换为一个具有32个特征的新数据集 X_reduced。

7.查看转换后的数据形状

python 复制代码
X_reduced.shape

这行代码输出 X_reduced 的形状。由于我们指定了 n_clusters=32,所以 X_reduced 的形状应该是 (1797, 32),即有1797个样本,每个样本有32个特征。

由此将手写数字图像数据从64维降到32维,通过特征聚合的方法实现降维。

可以在自己的数据集上试试~!

相关推荐
曦月逸霜4 小时前
机器学习——个人笔记(持续更新中~)
人工智能·机器学习
整得咔咔响4 小时前
贝尔曼最优公式(BOE)
人工智能·算法·机器学习
玄同7654 小时前
Python 自动发送邮件实战:用 QQ/163 邮箱发送大模型生成的内容
开发语言·人工智能·python·深度学习·机器学习·邮件·邮箱
玄同7654 小时前
机器学习中的三大距离度量:欧式距离、曼哈顿距离、切比雪夫距离详解
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘
rainbow7242444 小时前
AI证书选型深度分析:如何根据职业目标评估其真正价值
人工智能·机器学习
倔强的石头1064 小时前
归纳偏好 —— 机器学习的 “择偶标准”
人工智能·机器学习
龙山云仓4 小时前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
Tadas-Gao5 小时前
深度学习与机器学习的知识路径:从必要基石到独立范式
人工智能·深度学习·机器学习·架构·大模型·llm
wukangjupingbb5 小时前
Gemini 3和GPT-5.1在多模态处理上的对比
人工智能·gpt·机器学习
明月照山海-5 小时前
机器学习周报三十四
人工智能·机器学习