在数据集上通过聚类实现特征降维

分享一个通过聚类算法对数据特征进行聚类从而实现降维的代码

python 复制代码
import numpy as np
from sklearn import datasets, cluster
digits = datasets.load_digits()
images = digits.images
X = np.reshape(images, (len(images), -1))
agglo = cluster.FeatureAgglomeration(n_clusters=32)
agglo.fit(X)
FeatureAgglomeration(n_clusters=32)
X_reduced = agglo.transform(X)
X_reduced.shape

以下是代码讲解:

1.导入numpy库和机器学习库的数据集、聚类算法模块

python 复制代码
import numpy as np
from sklearn import datasets, cluster

2.加载手写数字数据集

python 复制代码
digits = datasets.load_digits()

这行代码从 sklearn.datasets 模块中加载了手写数字数据集,该数据集包含8x8像素的灰度图像和对应的标签(0到9)。

3.获取图像数据

python 复制代码
images = digits.images

digits.images 是一个形状为 (1797, 8, 8) 的数组,其中 1797 是样本数量,每个样本是一个 8x8 的灰度图像。

4.将图像数据重塑为二维数组

python 复制代码
X = np.reshape(images, (len(images), -1))

这行代码将每个 8x8 的图像展平成一个长度为64的一维向量,因此 X 的形状变为 (1797, 64)。

5.创建并拟合 FeatureAgglomeration 对象

python 复制代码
agglo = cluster.FeatureAgglomeration(n_clusters=32)
agglo.fit(X)

这里创建了一个 FeatureAgglomeration 对象,指定要生成的特征数为32。然后使用 fit 方法在数据 X 上训练这个模型。

6.转换数据以减少特征维度

python 复制代码
X_reduced = agglo.transform(X)

这行代码使用训练好的 FeatureAgglomeration 模型将原始数据 X 转换为一个具有32个特征的新数据集 X_reduced。

7.查看转换后的数据形状

python 复制代码
X_reduced.shape

这行代码输出 X_reduced 的形状。由于我们指定了 n_clusters=32,所以 X_reduced 的形状应该是 (1797, 32),即有1797个样本,每个样本有32个特征。

由此将手写数字图像数据从64维降到32维,通过特征聚合的方法实现降维。

可以在自己的数据集上试试~!

相关推荐
Christo321 分钟前
TFS-2026《Fuzzy Multi-Subspace Clustering 》
人工智能·算法·机器学习·数据挖掘
GIS瞧葩菜2 小时前
Cesium 轴拖拽 + 旋转圈拖拽 核心数学知识
人工智能·算法·机器学习
葱明撅腚2 小时前
利用Python挖掘城市数据
python·算法·gis·聚类
小王毕业啦2 小时前
2010-2024年 非常规高技能劳动力(+文献)
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·经管数据
张小凡vip3 小时前
数据挖掘(十)---python操作Spark常用命令
python·数据挖掘·spark
weixin_395448913 小时前
排查流程啊啊啊
人工智能·深度学习·机器学习
DN20203 小时前
AI销售机器人:节日祝福转化率提升30倍
人工智能·python·深度学习·机器学习·机器人·节日
香芋Yu3 小时前
【机器学习教程】第02章:线性代数基础【下】
学习·机器学习
张小凡vip4 小时前
数据挖掘(九) --Anaconda 全面了解与安装指南
人工智能·数据挖掘
困死了11114 小时前
KAG: Boosting LLMs in Professional Domains viaKnowledge Augmented Generation
机器学习