Manus通用任务智能体工作流程拆解分析

文章流程灵感来源于@艾逗比


一、核心工作流程

  1. 意图识别

    输入解析 :提取用户输入关键词(如"日本旅行计划"→japan-trip,任务类型travel)。

    交互补充:若需求模糊,引导用户补充信息或上传文档/图片。

  2. 任务初始化

    环境隔离 :根据任务关键词创建专属文件夹,启动Docker容器。

    资源管理:执行过程文件写入任务文件夹,结束后自动清理容器。

  3. 步骤规划

    智能拆分 :结合意图识别结果与背景信息,通过推理模型(如DeepSeek-R1)生成任务步骤。

    任务清单 :将步骤写入todo.md[ ]为待执行,[x]为已完成)。

  4. 任务执行

    动态调度 :遍历todo.md,通过Function Call调用对应Agent(如Search/Code/Data-Analysis Agent)。

    执行与反馈

    ◦ Agent执行任务并保存结果至文件夹。

    ◦ 主线程更新todo.md状态,循环至所有任务完成。

  5. 归纳整理

    结果生成 :整合任务产物(文档/代码/图片),按用户需求呈现。

    用户反馈:提供下载并收集满意度,支持后续优化。


二、关键Agent设计示例

  1. Search Agent

    搜索流程

    ① 调用Google API获取10-20条结果;

    ② 通过无头浏览器访问首条结果,提取文本及截图;

    ③ 多模态模型(如Claude-3)筛选有效信息,若不满足则模拟点击/滚动操作;

    ④ 循环直至满足需求,保存结果至任务文件夹。

    核心技术:无头浏览器+多模态模型协同。

  2. Code Agent

    代码生成 :根据需求生成Python/HTML等代码文件。

    执行验证 :系统调用执行代码,通过code-preview服务预览结果。

  3. Data-Analysis Agent

    自动化处理:生成数据分析脚本,执行后保存可视化结果。


三、优化方向

  1. 任务依赖管理 :将线性任务清单升级为DAG(有向无环图),支持复杂依赖关系。
  2. 质量保障机制 :引入自动化测试Agent,对低评分任务节点回溯重试。
  3. 人机协同模式 :支持任务执行中用户介入反馈(超时未响应则自动继续)。

四、技术评价

工程优势 :环境隔离与多Agent调度设计完善,交互体验优于同类产品。

技术依赖

• 意图识别依赖专用小模型;

• 任务规划需DeepSeek-R1等推理模型;

• 多模态处理需Claude-3等高成本模型。

商业化挑战 :高Token消耗导致成本压力,需平衡用户体验与运营成本。

验证需求:任务准确性与用户满意度需更多案例验证。


五、总结

Manus通过模块化Agent协作实现复杂任务处理,其核心价值在于工程化落地的流畅性。未来需在成本控制与任务可靠性上突破,同时探索DAG、人机协同等增强场景适应能力。

相关推荐
Elastic 中国社区官方博客3 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
2501_933329554 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI4 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅4 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
管牛牛4 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
云卓SKYDROID5 小时前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技
琅琊榜首20206 小时前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie6 小时前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
roman_日积跬步-终至千里6 小时前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉