研究案例:英伟达研究中心,华盛顿大学——TacSL:使用Franka机器人的视觉触觉传感器模拟和学习库

TacSL:使用Franka机器人的视觉触觉传感器模拟和学习库

英伟达研究中心,华盛顿大学

原文:https://iakinola23.github.io/tacsl/

PNP Robotics集智联机器人是思灵机器人和德国 Franka Robotics GmbH中国区金牌战略合作伙伴,负责Frank Robotics在中国区域的关于Franka机器人的销售、渠道拓展、技术支持等工作。

对于人类和机器人来说,触觉(称为触觉感知)对于执行接触丰富的操作任务至关重要。**在使用FRANKA机器人过程中触觉感知的三个关键挑战是 1) 解释传感器信号,2) 在新场景中预测传感器信号,以及 3) 学习基于传感器的策略。**对于视觉触觉传感器,由于其与视觉传感器(例如 RGB 相机)的密切关系,解释变得更容易。然而,预测仍然很困难,因为视觉触觉传感器通常涉及接触、变形、照明和成像,所有这些都是昂贵的模拟;反过来,策略学习一直具有挑战性,因为模拟不能用于大规模数据收集。

英伟达推出了TacSL ( taxel ),这是一个基于 GPU 的视觉触觉传感器模拟和学习库。TacSL 可用于模拟视觉触觉图像并提取接触力分布,速度比之前最先进的技术快 200 倍以上,所有这些都在广泛使用的 Isaac Gym 模拟器中完成。此外,TacSL还提供了一个学习工具包*,* 其中包含多个传感器模型、接触密集型训练环境和在线/离线算法,可促进模拟到真实应用的策略学习,形成了使用Franka机器人的视觉触觉传感器模拟和学习库

在算法方面,引入了一种名为非对称演员-评论家蒸馏 (AACD) 的新型在线强化学习算法,旨在有效且高效地学习基于触觉的模拟策略,并将其迁移到现实世界。最后,我们通过评估蒸馏和多模态传感对接触丰富的FRANKA机器人操作任务的好处,以及最关键的执行模拟到现实的迁移,展示了我们的库和算法的实用性

关于Franka RoboticsFR3

Franka Robotics FR3机器人是一个具备高精度和灵活性的协作机器人(Cobot),其设计旨在模拟人类手臂的功能。

1. 基本参数
  • 自由度(DOF):7个关节轴。

  • 负载能力:3公斤。

  • 工作半径:855毫米。

  • 重量:18公斤。

  • 控制系统:基于x86的PC控制器。

2. 传感器和安全系统
  • 力传感器:每个关节都配备有力传感器,能够实时检测施加的力,从而确保机器人能够与人安全互动。

  • 碰撞检测:内置碰撞检测机制,能在感知到异常力时立即停止运动。

  • 位置传感器:高精度的编码器提供准确的位置反馈。

3. 编程和控制
  • 编程语言:支持多种编程环境,如Python、C++、ROS(Robot Operating System)、Matlab、Simulink。

  • 用户界面:直观的用户界面,支持拖放式编程,便于无编程经验的用户使用。

  • 网络连接:通过Wi-Fi或以太网进行远程监控和控制。

Franka Robotics FR3机器人

相关推荐
LucianaiB1 分钟前
基于腾讯云MCP广场的AI自动化实践:爬取小红书热门话题
人工智能·自动化·腾讯云·trae叒更新了?
代码蛀虫向品19 分钟前
SpringAI框架详解:功能、接口及支持的AI模型
人工智能·框架·ai模型·springai·编程简化
CoderJia程序员甲38 分钟前
AI Agent开发之门:微软官方课程全面解析
人工智能·microsoft·智能体·ai教程·ai agents
__Benco1 小时前
OpenHarmony平台驱动开发(九),MIPI DSI
人工智能·驱动开发·harmonyos
IT古董1 小时前
【漫话机器学习系列】247.当 N=整个母体(WHEN N=POPULATION)
人工智能·机器学习
广药门徒1 小时前
关于多版本CUDA共存的研究,是否能一台机子装两个CUDA 版本并正常切换使用
linux·运维·人工智能
南玖yy1 小时前
C++ 工具链与开发实践:构建安全、高效与创新的开发生态
开发语言·c++·人工智能·后端·安全·架构·交互
odoo中国1 小时前
机器学习实操 第二部分 神经网路和深度学习 第17章 编码器、生成对抗网络和扩散模型
深度学习·机器学习·生成对抗网络
qq_348231852 小时前
复盘20250508
大数据·人工智能