深度学习基础:线性代数本质3——矩阵与线性变换

你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么。

1. 线性变换

变换本质上就是函数。例如,你输入一个向量 ,经过某个变换(即函数)的作用之后,输出另一个向量。

既然,变换本质上就是函数,那为啥还要多搞出这样一个术语?

其实,"变换"这个词暗示了我们能够以某种方式可视化这一输入----输出关系。它暗示我们要从向量运动的角度去理解。即,变换让向量从一个地方(对应输入向量),运动到了另一个地方(对应输出向量)。

线性代数限制在一种特殊类型的变换上,称为"线性变换",这种变换更容易理解。直观的说,如果变换具有以下两条性质,我们便可以称他说线性的:

  1. 直线在变换后仍然为直线,不能有所弯曲
  1. 原点必须保持固定
    非线性变换:直线弯曲了
    仿射变换:原点发生变化

线性变换:保持网格平行且等距分布的变换使用数值来描述线性变换

2. 使用数值来描述线性变换

如何实现你给计算机一个向量坐标,它返回给你变换后的坐标?、

答案是你只需要记住两个基向量i帽j帽变换后的位置

换句话说,向量vi帽j帽的一个特定线性组合,那么变换后的向量v也是变换后的i帽j帽的线性组合,这意味着你可以通过变换后的i帽j帽推出变换后的向量v

小结:

  • 只要记录了变换后的i帽和j帽,我们就可以推断出任意向量在变换后的位置
  • 一个二维线性变换仅由四个数字完全确定(变换后i帽和j帽的两个坐标)

3. 矩阵

通常我们把上面的坐标包装在2x2的格子中,称它为2x2矩阵

你可以把它的列理解为两个特殊的向量,即变换后的i帽j帽

如果你有一个描述线性变换的2x2矩阵,以及一个给定向量,想了解线性变换对这两个向量的作用,你只需要 取出向量坐标,分别于矩阵的特定列相乘,然后相加即可(这与缩放基向量在在相加的思想一致)

把矩阵列看作是变换后的基向量,把矩阵乘法看作它们的线性组合

4. 使用矩阵来线性线性变换

① 旋转变换

例如将整个空间逆时针旋转90度,那么i帽便落在坐标(0,1)上,j帽落在坐标(-1,0)上

如果想计算出任意向量在逆时针旋转90度后的位置,只需要把他和上面矩阵相乘即可

② 剪切变换

在这个变换里i帽保持不变,使用矩阵第一列为(1,0),j帽移动到了坐标(1,1)上,所以矩阵第二列为(1,1)

PS:如果变换后的i帽和变换后的j帽是线性相关的,意味着一个向量是另一个向量的倍数,那么这个线性变换,将各二维空间挤压到一个二维它们所在的一条直线上(也就是两个相关向量所张成的一维空间)

在之后每当你看到一个矩阵时,你都可以把他解读为:对空间的一种特定变换

相关推荐
人工智能培训20 分钟前
Transformer-位置编码(Position Embedding)
人工智能·深度学习·大模型·transformer·embedding·vision
我是个菜鸡.1 小时前
视觉/深度学习/机器学习相关面经总结(3)(持续更新)
人工智能·深度学习·机器学习
缘友一世1 小时前
PyTorch深度学习实战【12】之基于RNN的自然语言处理入门
pytorch·rnn·深度学习
青春不败 177-3266-05201 小时前
基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化实践技术应用
人工智能·pytorch·深度学习·目标检测·生态学·遥感
en-route1 小时前
从零开始学神经网络——GRU(门控循环单元)
人工智能·深度学习·gru
Francek Chen5 小时前
【深度学习计算机视觉】07:单发多框检测(SSD)
人工智能·pytorch·深度学习·计算机视觉·单发多框检测
dami_king5 小时前
RTX4090算力应用-3D
人工智能·深度学习·3d·ai
mCell13 小时前
长期以来我对 LLM 的误解
深度学习·llm·ollama
Ada's14 小时前
深度学习在自动驾驶上应用(二)
人工智能·深度学习·自动驾驶
机器学习之心16 小时前
198种组合算法+优化BiLSTM神经网络+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!
深度学习·神经网络·shap分析·新数据预测·198种组合算法·优化bilstm神经网络·多输出