深度学习基础:线性代数本质3——矩阵与线性变换

你对线性代数的一切困惑,根源就在于没有真正理解矩阵到底是什么。

1. 线性变换

变换本质上就是函数。例如,你输入一个向量 ,经过某个变换(即函数)的作用之后,输出另一个向量。

既然,变换本质上就是函数,那为啥还要多搞出这样一个术语?

其实,"变换"这个词暗示了我们能够以某种方式可视化这一输入----输出关系。它暗示我们要从向量运动的角度去理解。即,变换让向量从一个地方(对应输入向量),运动到了另一个地方(对应输出向量)。

线性代数限制在一种特殊类型的变换上,称为"线性变换",这种变换更容易理解。直观的说,如果变换具有以下两条性质,我们便可以称他说线性的:

  1. 直线在变换后仍然为直线,不能有所弯曲
  1. 原点必须保持固定
    非线性变换:直线弯曲了
    仿射变换:原点发生变化

线性变换:保持网格平行且等距分布的变换使用数值来描述线性变换

2. 使用数值来描述线性变换

如何实现你给计算机一个向量坐标,它返回给你变换后的坐标?、

答案是你只需要记住两个基向量i帽j帽变换后的位置

换句话说,向量vi帽j帽的一个特定线性组合,那么变换后的向量v也是变换后的i帽j帽的线性组合,这意味着你可以通过变换后的i帽j帽推出变换后的向量v

小结:

  • 只要记录了变换后的i帽和j帽,我们就可以推断出任意向量在变换后的位置
  • 一个二维线性变换仅由四个数字完全确定(变换后i帽和j帽的两个坐标)

3. 矩阵

通常我们把上面的坐标包装在2x2的格子中,称它为2x2矩阵

你可以把它的列理解为两个特殊的向量,即变换后的i帽j帽

如果你有一个描述线性变换的2x2矩阵,以及一个给定向量,想了解线性变换对这两个向量的作用,你只需要 取出向量坐标,分别于矩阵的特定列相乘,然后相加即可(这与缩放基向量在在相加的思想一致)

把矩阵列看作是变换后的基向量,把矩阵乘法看作它们的线性组合

4. 使用矩阵来线性线性变换

① 旋转变换

例如将整个空间逆时针旋转90度,那么i帽便落在坐标(0,1)上,j帽落在坐标(-1,0)上

如果想计算出任意向量在逆时针旋转90度后的位置,只需要把他和上面矩阵相乘即可

② 剪切变换

在这个变换里i帽保持不变,使用矩阵第一列为(1,0),j帽移动到了坐标(1,1)上,所以矩阵第二列为(1,1)

PS:如果变换后的i帽和变换后的j帽是线性相关的,意味着一个向量是另一个向量的倍数,那么这个线性变换,将各二维空间挤压到一个二维它们所在的一条直线上(也就是两个相关向量所张成的一维空间)

在之后每当你看到一个矩阵时,你都可以把他解读为:对空间的一种特定变换

相关推荐
Alessio Micheli8 分钟前
基于几何布朗运动的股价预测模型构建与分析
线性代数·机器学习·概率论
vlln12 分钟前
适应性神经树:当深度学习遇上决策树的“生长法则”
人工智能·深度学习·算法·决策树·机器学习
workflower2 小时前
使用谱聚类将相似度矩阵分为2类
人工智能·深度学习·算法·机器学习·设计模式·软件工程·软件需求
HappyAcmen2 小时前
线代第二章矩阵第八节逆矩阵、解矩阵方程
笔记·学习·线性代数·矩阵
攻城狮7号3 小时前
一文理清人工智能,机器学习,深度学习的概念
人工智能·深度学习·机器学习·ai
小森77673 小时前
(七)深度学习---神经网络原理与实现
人工智能·深度学习·神经网络·算法
weixin_435208164 小时前
如何使用 Qwen3 实现 Agentic RAG?
人工智能·深度学习·自然语言处理·aigc
Alessio Micheli5 小时前
奇怪的公式
笔记·线性代数
小洛~·~5 小时前
多模态RAG与LlamaIndex——1.deepresearch调研
人工智能·python·深度学习·神经网络·chatgpt
AndrewHZ5 小时前
【图像处理基石】遥感图像分析入门
图像处理·人工智能·深度学习·计算机视觉·遥感图像·技术分析·多光谱