目标检测——清洗数据

清洗VOC格式数据集代码示例

python 复制代码
import os
import xml.etree.ElementTree as ET

def process_annotations(image_folder, annotation_folder):
    # 遍历标签文件夹中的所有XML文件
    for xml_file in os.listdir(annotation_folder):
        if not xml_file.endswith('.xml'):
            continue
        
        xml_path = os.path.join(annotation_folder, xml_file)
        tree = ET.parse(xml_path)
        root = tree.getroot()
        
        # 标记是否保留该文件
        keep_file = False
        
        # 遍历所有<object>标签
        for obj in root.findall('object'):
            name = obj.find('name').text
            if name == 'person':  # 需修改,保留哪个类别就写哪个类别
                keep_file = True
            else:
                root.remove(obj)  # 移除非Pedestrian的<object>
        
        # 如果没有Pedestrian类别,删除对应的图片和标签
        if not keep_file:
            image_name = root.find('filename').text
            image_path = os.path.join(image_folder, image_name)
            if os.path.exists(image_path):
                os.remove(image_path)
            os.remove(xml_path)
        else:
            # 保存修改后的XML文件
            tree.write(xml_path)

# 示例用法
image_folder = r'D:\BaiduNetdiskDownload\VOCdevkit\VOCdevkit\VOC2007\JPEGImages'  # 替换为图片文件夹路径
annotation_folder = r'D:\BaiduNetdiskDownload\VOCdevkit\VOCdevkit\VOC2007\Annotations'  # 替换为标签文件夹路径
process_annotations(image_folder, annotation_folder)

需根据自己的数据集修改name及文件路径!!!

清洗YOLO格式数据集代码示例

python 复制代码
import os

def process_labels(image_folder, label_folder):
    # 遍历标签文件夹中的所有标签文件
    for label_file in os.listdir(label_folder):
        if not label_file.endswith('.txt'):
            continue
        
        label_path = os.path.join(label_folder, label_file)
        image_name = os.path.splitext(label_file)[0] + '.png'
        image_path = os.path.join(image_folder, image_name)
        
        # 读取标签文件内容
        with open(label_path, 'r') as f:
            lines = f.readlines()
        
        # 需修改!!!根据自己想要的类别保留!筛选类别为0的行
        filtered_lines = [line for line in lines if line.strip().split()[0] == '0']
        
        # 如果没有类别为0的行,删除对应的图片和标签
        if not filtered_lines:
            if os.path.exists(image_path):
                os.remove(image_path)
            os.remove(label_path)
        else:
            # 保存修改后的标签文件
            with open(label_path, 'w') as f:
                f.writelines(filtered_lines)

# 示例用法
label_folder = r'D:\BaiduNetdiskDownload\annotations_trainval2017\txt'  # 替换为图片文件夹路径
image_folder = r'D:\BaiduNetdiskDownload\val2017\val2017'  # 替换为标签文件夹路径
process_labels(image_folder, label_folder)

需根据自己的数据集修改line及文件路径!!!

相关推荐
moonsims4 分钟前
SKYTRAC-无人机、无人机系统和城市空中交通卫星通信 – BVLOS 和 C2 卫星通信终端和任务服务器
人工智能
云卓SKYDROID6 分钟前
无人机电压模块技术剖析
人工智能·无人机·电压·高科技·云卓科技
Codebee12 分钟前
使用Qoder 改造前端UI/UE升级改造实践:从传统界面到现代化体验的华丽蜕变
前端·人工智能
用户51914958484517 分钟前
Apache服务器自动化运维与安全加固脚本详解
人工智能·aigc
yintele22 分钟前
智能AI汽车电子行业,EMS应用相关问题
人工智能·汽车
却道天凉_好个秋30 分钟前
深度学习(四):数据集划分
人工智能·深度学习·数据集
数字冰雹34 分钟前
“图观”端渲染场景编辑器
人工智能·编辑器
里昆34 分钟前
【AI】Tensorflow在jupyterlab中运行要注意的问题
人工智能·python·tensorflow
荼蘼1 小时前
OpenCV 高阶 图像金字塔 用法解析及案例实现
人工智能·opencv·计算机视觉
Clownseven1 小时前
2025云计算趋势:Serverless与AI大模型如何赋能中小企业
人工智能·serverless·云计算