目标检测——清洗数据

清洗VOC格式数据集代码示例

python 复制代码
import os
import xml.etree.ElementTree as ET

def process_annotations(image_folder, annotation_folder):
    # 遍历标签文件夹中的所有XML文件
    for xml_file in os.listdir(annotation_folder):
        if not xml_file.endswith('.xml'):
            continue
        
        xml_path = os.path.join(annotation_folder, xml_file)
        tree = ET.parse(xml_path)
        root = tree.getroot()
        
        # 标记是否保留该文件
        keep_file = False
        
        # 遍历所有<object>标签
        for obj in root.findall('object'):
            name = obj.find('name').text
            if name == 'person':  # 需修改,保留哪个类别就写哪个类别
                keep_file = True
            else:
                root.remove(obj)  # 移除非Pedestrian的<object>
        
        # 如果没有Pedestrian类别,删除对应的图片和标签
        if not keep_file:
            image_name = root.find('filename').text
            image_path = os.path.join(image_folder, image_name)
            if os.path.exists(image_path):
                os.remove(image_path)
            os.remove(xml_path)
        else:
            # 保存修改后的XML文件
            tree.write(xml_path)

# 示例用法
image_folder = r'D:\BaiduNetdiskDownload\VOCdevkit\VOCdevkit\VOC2007\JPEGImages'  # 替换为图片文件夹路径
annotation_folder = r'D:\BaiduNetdiskDownload\VOCdevkit\VOCdevkit\VOC2007\Annotations'  # 替换为标签文件夹路径
process_annotations(image_folder, annotation_folder)

需根据自己的数据集修改name及文件路径!!!

清洗YOLO格式数据集代码示例

python 复制代码
import os

def process_labels(image_folder, label_folder):
    # 遍历标签文件夹中的所有标签文件
    for label_file in os.listdir(label_folder):
        if not label_file.endswith('.txt'):
            continue
        
        label_path = os.path.join(label_folder, label_file)
        image_name = os.path.splitext(label_file)[0] + '.png'
        image_path = os.path.join(image_folder, image_name)
        
        # 读取标签文件内容
        with open(label_path, 'r') as f:
            lines = f.readlines()
        
        # 需修改!!!根据自己想要的类别保留!筛选类别为0的行
        filtered_lines = [line for line in lines if line.strip().split()[0] == '0']
        
        # 如果没有类别为0的行,删除对应的图片和标签
        if not filtered_lines:
            if os.path.exists(image_path):
                os.remove(image_path)
            os.remove(label_path)
        else:
            # 保存修改后的标签文件
            with open(label_path, 'w') as f:
                f.writelines(filtered_lines)

# 示例用法
label_folder = r'D:\BaiduNetdiskDownload\annotations_trainval2017\txt'  # 替换为图片文件夹路径
image_folder = r'D:\BaiduNetdiskDownload\val2017\val2017'  # 替换为标签文件夹路径
process_labels(image_folder, label_folder)

需根据自己的数据集修改line及文件路径!!!

相关推荐
编码小哥4 小时前
OpenCV Haar级联分类器:人脸检测入门
人工智能·计算机视觉·目标跟踪
程序员:钧念4 小时前
深度学习与强化学习的区别
人工智能·python·深度学习·算法·transformer·rag
数据与后端架构提升之路5 小时前
TeleTron 源码揭秘:如何用适配器模式“无缝魔改” Megatron-Core?
人工智能·python·适配器模式
Chef_Chen5 小时前
数据科学每日总结--Day44--机器学习
人工智能·机器学习
这张生成的图像能检测吗5 小时前
(论文速读)FR-IQA:面向广义图像质量评价:放松完美参考质量假设
人工智能·计算机视觉·图像增强·图像质量评估指标
KG_LLM图谱增强大模型6 小时前
本体论与知识图谱:揭示语义技术的核心差异
人工智能·知识图谱·本体论
JicasdC123asd6 小时前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白7 小时前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
小程故事多_807 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20207 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能