AF3 identity_trans函数解读

AlphaFold3 rigid_utils 模块的 identity_trans 函数的功能是生成带有批次维度的全零平移向量张量。

源代码:

复制代码
@lru_cache(maxsize=None)
def identity_trans(
    batch_dims: Tuple[int], 
    dtype: Optional[torch.dtype] = None,
    device: Optional[torch.device] = None, 
    requires_grad: bool = True,
) -> torch.Tensor:
    trans = torch.zeros(
        (*batch_dims, 3), 
        dtype=dtype, 
        device=device, 
        requires_grad=requires_grad
    )
    return trans

源码解读:

1. 函数定义
复制代码
def identity_trans(
    batch_dims: Tuple[int], 
    dtype: Optional[torch.dtype] = None,
    device: Optional[torch.device] = None, 
    requires_grad: bool = True,
) -> torch.Tensor:

参数解析

  • batch_dims : 表示输入的批次维度,比如 (16,) 就创建 16 个零向量 (16, 3)

  • dtype : 数据类型,float32, float64 之类的。

  • device : 张量在哪个设备上,cpucuda

  • requires_grad : 是否需要梯度,默认为 True,适合训练场景。

👉 目标 :创建一个形状 [*, 3] 的零向量,代表初始平移向量 (0, 0, 0)

2. 创建张量
复制代码
trans = torch.zeros(
    (*batch_dims, 3), 
    dtype=dtype, 
    device=device, 
    requires_grad=requires_grad
)

解析逐项看

  • (*batch_dims, 3) :

    • batch_dims 展开成多个批次维度,比如 (16,) 展开后就是 16

    • 3 是每个向量的长度,表示 (x, y, z) 三个方向的位移。

    • 最终形状类似 torch.Size([16, 3])

  • dtype : 控制数据类型,比如 torch.float32

  • device : 控制张量生成在哪个设备,比如 cuda:0

  • requires_grad : 如果 True,这个张量就会参与梯度计算(适合训练用)。

3. 返回张量
复制代码
  return trans

最终返回 形状 [*, 3] 的全零平移向量张量。

4. 总结

identity_trans() 的核心功能:

生成初始位移向量 ------ 形状 [*, 3] 的零向量,代表 "不移动"

支持多批次输入 ------ batch_dims 灵活扩展支持多维数据,比如 [(8, 4, 3)]

缓存加速 ------ 重复调用相同参数时,不重复创建张量,直接用缓存结果。

支持梯度训练 ------ 默认开启 requires_grad=True,可以在训练时更新平移向量。

相关推荐
LHZSMASH!5 小时前
基于动态图卷积与时间自注意力的EEG情绪识别混合网络——深度技术解析
人工智能·深度学习
AI小云5 小时前
【数据操作与可视化】Matplotlib绘图-常用操作
python·数据可视化
木婉清fresh5 小时前
测开python高频面试精选100题
开发语言·python·面试
彼岸花开了吗5 小时前
构建AI智能体:四十、K-Means++与RAG的融合创新:智能聚类与检索增强生成的深度应用
人工智能·python
趁你还年轻_6 小时前
检索增强生成 RAG
人工智能
蒙奇·D·路飞-6 小时前
大模型领域的较量与发展趋势:从技术突破到产业变革
人工智能
JHC0000006 小时前
47. 全排列 II
开发语言·python·面试
da_vinci_x6 小时前
Sampler 风格化滤镜:拒绝“写实”,AI 一键生成“塞尔达”风草地
人工智能·游戏·aigc·材质·技术美术·游戏美术·pbr
AI浩6 小时前
基于检测变换器的无源目标检测
人工智能·目标检测·目标跟踪
棒棒的皮皮6 小时前
【OpenCV】Python图像处理之特征提取
图像处理·python·opencv