Flume实战:Kafka Channel的使用配置场景

概述

使用Flume采集数据时,我们可能会遇到各种场景,一个数据采集任务的标准配置都是Source->Channel->Sink。对于Channel组件的选择常用的有Memory Channel、File Channel。而我们都知道,Kafka组件在大数据平台的使用过程中是一个非常重要的角色,如果涉及到Flume和Kafka的交互大致也可以分为如下几种场景:

  • Kafka作为数据源,将Kafka中的数据同步到其他组件中
  • Kafka作为目标端,将其他如文件中的数据采集到Kafka的Topic中
  • Kafka作为中转,将数据从Source采集到Sink中

对于以上3种场景,在配置Flume的job时,可能就涉及到不同的组件配置模板。是否每一种场景都需要配置Source->Channel->Sink呢?答案肯定是否定的。下文将分别介绍这几种场景的架构配置。

场景一:kafka作为数据源,将数据同步到hdfs

任务逻辑架构图

在这种场景中,因为数据事先就已经在kafka中,所以就无需配置source,直接采用Kakfa作为Channel,将数据写入到HDFS中。

Flume任务模板

bash 复制代码
## 组件
a1.channels=c2
a1.sinks=k2

## Channel配置
a1.channels.c2.type=org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c2.kafka.topic=channel_topic
a1.channels.c2.kafka.bootstrap.servers=192.168.0.1:9092
a1.channels.c2.kafka.consumer.group.id=channel_group
a1.channels.c2.parseAsFlumeEvent=false
a1.channels.c2.kafka.producer.security.protocol=SASL_PLAINTEXT
a1.channels.c2.kafka.producer.sasl.mechanism=GSSAPI
a1.channels.c2.kafka.producer.sasl.kerberos.service.name = kafka
a1.channels.c2.kafka.producer.acks=1

# configure sinks
a1.sinks.k2.type = hdfs
a1.sinks.k2.hdfs.path = hdfs://nameservice1/user/house/data/flume/test_hdfs_data/%Y-%m-%d/
a1.sinks.k2.hdfs.round = true
a1.sinks.k2.hdfs.roundValue = 24
a1.sinks.k2.hdfs.roundUnit = hour
a1.sinks.k2.hdfs.rollInterval = 3600
a1.sinks.k2.hdfs.rollSize = 20480000
a1.sinks.k2.hdfs.rollCount = 0
a1.sinks.k2.hdfs.useLocalTimeStamp = true
a1.sinks.k2.hdfs.fileType = DataStream
a1.sinks.k2.hdfs.callTimeout=600000
# kerberos配置
a1.sinks.k2.hdfs.kerberosPrincipal = XX@XXX
a1.sinks.k2.hdfs.kerberosKeytab = /data/keytab/XXX.keytab

# 绑定Chennel和Sink
a1.sinks.k2.channel = c2

场景二:kafka作为目标端,将数据从文件采集到kafka中

任务逻辑架构图

Flume任务模板

bash 复制代码
## 组件
a1.sources=s2
a1.channels=c2

## Source 配置
a1.sources.s2.type = TAILDIR
a1.sources.s2.positionFile = /data/flume/positionFile/xxl_log_to_kafka.json
a1.sources.s2.filegroups = f1
a1.sources.s2.filegroups.f1 = /data/logs/access.log

## Channel配置
a1.channels.c2.type=org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c2.kafka.topic=channel_topic
a1.channels.c2.kafka.bootstrap.servers=192.168.0.1:9092
a1.channels.c2.kafka.consumer.group.id=channel_group
a1.channels.c2.parseAsFlumeEvent=false
a1.channels.c2.kafka.producer.security.protocol=SASL_PLAINTEXT
a1.channels.c2.kafka.producer.sasl.mechanism=GSSAPI
a1.channels.c2.kafka.producer.sasl.kerberos.service.name = kafka
a1.channels.c2.kafka.producer.acks=1

# 绑定Source和Channel
a1.sources.s2.channels = c2

场景三:将数据从日志文件中采集到HDFS,kafka作为中转

任务逻辑架构图

Flume任务模板

bash 复制代码
## 组件
a1.sources=s2
a1.channels=c2
a1.sinks=k2

## Source 配置
a1.sources.s2.type = TAILDIR
a1.sources.s2.positionFile = /data/flume/positionFile/xxl_log_to_kafka.json
a1.sources.s2.filegroups = f1
a1.sources.s2.filegroups.f1 = /data/logs/access.log

## Channel配置
a1.channels.c2.type=org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c2.kafka.topic=channel_topic
a1.channels.c2.kafka.bootstrap.servers=192.168.0.1:9092
a1.channels.c2.kafka.consumer.group.id=channel_group
a1.channels.c2.parseAsFlumeEvent=false
a1.channels.c2.kafka.producer.security.protocol=SASL_PLAINTEXT
a1.channels.c2.kafka.producer.sasl.mechanism=GSSAPI
a1.channels.c2.kafka.producer.sasl.kerberos.service.name = kafka
a1.channels.c2.kafka.producer.acks=1

# configure sinks
a1.sinks.k2.type = hdfs
a1.sinks.k2.hdfs.path = hdfs://nameservice1/user/house/data/flume/test_hdfs_data/%Y-%m-%d/
a1.sinks.k2.hdfs.round = true
a1.sinks.k2.hdfs.roundValue = 24
a1.sinks.k2.hdfs.roundUnit = hour
a1.sinks.k2.hdfs.rollInterval = 3600
a1.sinks.k2.hdfs.rollSize = 20480000
a1.sinks.k2.hdfs.rollCount = 0
a1.sinks.k2.hdfs.useLocalTimeStamp = true
a1.sinks.k2.hdfs.fileType = DataStream
a1.sinks.k2.hdfs.callTimeout=600000
# kerberos配置
a1.sinks.k2.hdfs.kerberosPrincipal = XX@XXX
a1.sinks.k2.hdfs.kerberosKeytab = /data/keytab/XXX.keytab

# 绑定Source和Channel
a1.sources.s2.channels = c2

# 绑定Sink和Channel
a1.sinks.k2.channel = c2

总结

在使用Flume采集数据时,使用Kafka Channel有如下优点:

  • 减少Flume对内存资源的消耗,使用默认的内存Channel时,数据存储在内存中,如果下游写入较慢,数据会一直堆积产生反压,甚至会导致内存过高而崩溃。
  • 增加系统的可靠性,没有数据丢失风险。使用内存Channel时,如果Flume发生崩溃,内存Channel中没有写入到Sink端的数据会丢失。
  • 性能远优于文件Channel,同时兼顾系统的可靠性,另外在配置Flume任务时可以依照上述架构方案减少Flume组件,缩短数据的处理流程。
相关推荐
中科岩创3 小时前
某公园楼栋自由曲面薄壳结构自动化监测
大数据·网络·物联网·自动化
caihuayuan53 小时前
升级element-ui步骤
java·大数据·spring boot·后端·课程设计
zskj_zhyl6 小时前
数字康养新范式:七彩喜平台重构智慧养老生态的深度实践
大数据·人工智能·物联网
白码低代码6 小时前
橡胶制品行业质检管理的痛点 质检LIMS如何重构橡胶制品质检价值链
大数据·人工智能·重构·lims·实验室管理系统
Sui_Network7 小时前
Sui Basecamp 2025 全栈出击
大数据·游戏·web3·去中心化·区块链
开利网络7 小时前
开放的力量:新零售生态的共赢密码
大数据·运维·服务器·信息可视化·重构
奋斗者1号7 小时前
神经网络中之多类别分类:从基础到高级应用
大数据·神经网络·分类
Microsoft Word7 小时前
Hadoop架构再探讨
大数据·hadoop·架构
吴爃7 小时前
了解Hadoop
大数据·hadoop·分布式
caihuayuan58 小时前
Vue生命周期&脚手架工程&Element-UI
java·大数据·spring boot·后端·课程设计