使用 2 端口探头测量 40 uOhm(2000 安培)PDN 的挑战 – 需要多少 CMRR?

部分 1 / 3
本文是 3 部分系列的第一部分:

介绍

我们大多数人都知道 2 端口测量中的接地回路。我们大多数人也都知道,我们需要引入接地回路隔离器来纠正错误。如果没有,我们已经发表了大量关于这个主题的文章。但是您需要增加多少 CMRR 呢?使用探针对这一要求有何影响?
请放心,这种测量可以成功执行,如图 1 所示,我们将在本博客中向您展示如何确定它需要多少 CMRR。

图 1 -- 通过阻抗测量的 37 μΩ 已知 DUT 2 端口分流的描述。
Intel、Nvidia、AMD、Qualcomm 和 Broadcom 等公司正在将更多内核放在单个芯片上。Ampere 就是一个很好的例子,他们设计了一个在单个芯片上具有 192 个内核的云处理器解决方案。虽然 2000 安培似乎过高,但数据中心、超级计算和 AI 的电力需求已经超过了这个数字。在不考虑热设计或 PDN 验证的其他因素的情况下,让我们专注于测量 2000 安培 PDN 所需的内容。
使用 2 端口探头甚至两个 1 端口探头测量 2000 A PDN 并不直观,甚至不简单。为了有效地测量 2000 安培的 PDN,首先要了解要测量以支持 2000 安培的所需阻抗,这一点很重要。参考 EQ(1),如果假设 0.8V 电源域具有 80 mV 峰峰值纹波规格,那么对于 2000 A 的阶跃负载,目标阻抗 (ZTGT) 为 40 μΩ。
情商(1)

接地回路误差

了解了 ZTGT,可以努力了解能够进行 40 μΩ 测量的要求。很快就会发现,共模抑制比 (CMRR) 成为减轻接地回路的重要品质因数,以便通过测量成功将低阻抗测量到与双端口分流相关的微欧姆级。这种方法已经被广泛发布,因此本次讨论将不包括细节。
图 1 描述了使用 1 米 PDN 电缆的 40 μΩ 被测设备 (DUT) 的 2 端口测量设置。接地环路误差清晰可见,由此产生的误差如图 2 所示。

图 2 -- 使用 1 米 PDN 电缆的 40 μΩ DUT 阻抗测量装置。

图 3 - 使用 1 米 PDN 电缆的 40 μΩ DUT 阻抗测量装置。
接地回路电阻是连接 VNA 和 DUT 的两根电缆的并联等效电阻。在这种情况下,两根电缆与探头接地引脚相同。因此,单个电缆和探针的电阻是测量值的两倍。
均衡器(2)

返回电阻是电缆屏蔽层和引脚电阻之和。
均衡器(3)

通过替换
情商(4)

求解测量值并添加 DUT 可得到
情商(5)

这清楚地表明,接地回路由两部分组成,即电缆和引脚。每个都为接地环路误差提供电阻。
一个常见的错误是使用 calibration 来消除 ground loop 误差。校准将从结果中减去 R_measured 的常数值,理论上可提供正确的测量值。
均衡器(6)

这种方法不起作用,因为 K 的值是常数,但 cable 和 pin 电阻的值不是。弯曲电缆或对引脚施加压缩将使接地电阻值发生少量变化。许多 VNA 上使用的 BNC 连接器的接地电阻也不是恒定的。然而,这个微小的值变化与 DUT 具有相同的数量级,而电缆 + 引脚电阻比 DUT 大许多数量级。
此方法尝试取两个非常大的数字之间的差以获得非常小的结果。这通常是不成功的。

Ground Isolator 简介

接地隔离器的引入将方程式变为
情商(7)

在这种情况下,接地电阻首先除以隔离器的 CMRR,从而显著降低对接地回路电阻微小变化的敏感性。
变压器隔离器在低频时限制此 CMRR,而固态隔离器则不然。另一方面,变压器的工作频率通常高于固态隔离器,因此需要权衡取舍。但问题是需要多少隔离才能进行合理的测量。
情商(8)

均衡器(9)

均衡器(10)

假设愿意在 40uOhm 测量中容忍 10% 的接地环路误差,则误差项必须小于 40μΩ。
均衡器(11)

均衡器(12)

这使我们能够求解执行此测量所需的隔离器 CMRR。
均衡器(13)

1 米 PDN 电缆的屏蔽电阻约为 15mΩ。Picotest P2104A 引脚的电阻通常也约为 15mΩ,尽管接触压力可能会有很大变化,并且存在很大的容差。
均衡器(14)

情商(15)

在低频下,进行测量的最小 CMRR 为 77.5dB。

使用 CMRR 减少接地环路误差

为了演示 CMRR 测量要求,将理想的参数化运算放大器插入到仿真设置中,如图 1 所示,如图 3 所示。使用 1 米 PDN 电缆和理想运算放大器的 2 端口分流测量结果如图 4 所示。理想的运算放大器代表接地环路隔离器。图中显示了具有 57dB 和 77.5dB 的运算放大器的 CMRR 与没有 CMRR 的结果。CMRR 为 57dB 的结果表明了另一款 Picotest 产品 J2113A。

图 4 -- 使用 1 米 PDN 电缆和理想运算放大器的 40 μΩ 阻抗测量装置。

图 5 - 使用 1 米 PDN 电缆的 40 uΩ DUT 阻抗测量设置,具有 CMRR 变化。
如图 4 所示 ,当 CMRR 等于 77.5dB 时,我们的 40 μΩ DUT 的未校准误差为 7.4%。然而,如图 4 所示,当 CMRR 等于 57dB 时,未校准的误差几乎是 100%。这再次强调了前面的观点,即在 40 μΩ 下测量 2000 A PDN 并不容易或直观。然后,可以使用校准来进一步提高此精度。
点击此++链接查看本博客讨论的第 2 部分,++ 演示如何使用 2 端口探头测量 40 uΩ DUT。

引用

  1. Processors- Ampere Altra and AmpereOne

  2. Picotest J2114A 高 CMRR 隔离放大器 - 接地回路断路器 |Signal Edge 解决方案 (signaledgesolutions.com)

  3. S. M. Sandler,"如何测量超低阻抗(100uOhm 及更低)PDN",EDI CON,2018 年 10 月。

  4. A. K. Davis, S. M. Sandler, "2 端口分流直通测量和固有接地回路",EDI CON,2018 年 10 月。

  5. Picotest P2102A 2 端口探头 - Picotest P2102A 2 端口探头 |Signal Edge 解决方案 (signaledgesolutions.com)

  6. Picotest P2104A - Picotest P2104A 1 端口传输线 PDN 探头 |Signal Edge 解决方案 (signaledgesolutions.com)

  7. Picotest PDN 电缆 - Picotest PDN 电缆 |Signal Edge 解决方案 (signaledgesolutions.com)

  8. Picotest J2113A 半浮动差分放大器 - Picotest J2113A 半浮动差分放大器 - 接地回路断路器 |Signal Edge 解决方案 (signaledgesolutions.com)

  9. Omicron Bode 100 矢量网络分析仪 - Omicron Bode 100 矢量网络分析仪 |Signal Edge 解决方案 (signaledgesolutions.com)

相关推荐
David WangYang8 分钟前
通过 Ansys Discovery CFD 仿真探索电池冷板概念
硬件开发
David WangYang17 天前
HFSS 中的同轴谐振器特征模态分析
硬件开发
David WangYang20 天前
走线宽度对高频插入损耗的影响
硬件开发
David WangYang23 天前
串扰的烦恼(Xtalk)
硬件开发
David WangYang1 个月前
实验设计如何拯救我的 CEI VSR 28G 设计
硬件开发
David WangYang1 个月前
IEEE P370:用于高达 50 GHz 互连的夹具设计和数据质量公制标准
硬件开发
David WangYang1 个月前
112 Gbps 及以上串行链路的有效链路均衡
硬件开发
David WangYang1 个月前
非接触式互连:当串扰是您的朋友时
硬件开发
David WangYang2 个月前
使用光标测量,使用 TDR 测量 pH 和 fF
硬件开发
David WangYang2 个月前
差动讯号(3)弱耦合与强耦合
硬件开发