【Leetcode·中等】如何初始化(583.两个字符串的删除操作·Delete Operation for Two Strings)

其实做动态规划相关题目的朋友难免会碰到该如何初始化 dp 数组的问题,有的解答是 dp[i]代表的是 (i-1),有时候又代表的是 i,那到底是应该用哪种呢?这两种又有什么区别?今天这道题带你整明白嘿嘿😎

题目描述

英文版描述

Given two strings word1 and word2, return the minimum number of steps required to make word1and word2the same.

In one step, you can delete exactly one character in either string.

Example 1:

Input: word1 = "sea", word2 = "eat" Output: 2 Explanation: You need one step to make "sea" to "ea" and another step to make "eat" to "ea".

Example 2:

Input: word1 = "leetcode", word2 = "etco" Output: 4

Constraints:

  • 1 <= word1.length, word2.length <= 500
  • word1 and word2 consist of only lowercase English letters.

英文版地址

https://leetcode.com/problems/delete-operation-for-two-strings/description/https://leetcode.com/problems/delete-operation-for-two-strings/description/

中文版描述

给定两个单词 word1word2 ,返回使得 word1word2相同 所需的最小步数

每步可以删除任意一个字符串中的一个字符。

示例 1:

输入: word1 = "sea", word2 = "eat" 输出: 2 解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"

示例 2:

输入: word1 = "leetcode", word2 = "etco" **输出:**4

提示:

  • 1 <= word1.length, word2.length <= 500
  • word1word2 只包含小写英文字母

中文版地址

https://leetcode.cn/problems/delete-operation-for-two-strings/description/https://leetcode.cn/problems/delete-operation-for-two-strings/description/

解题方法

java 复制代码
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length()][word2.length()];
        if (word1.charAt(0) != word2.charAt(0)) {
            dp[0][0] = 2;
        }
        for (int i = 1; i < word1.length(); i++) {
            if (word1.charAt(i) == word2.charAt(0) && dp[i - 1][0] != i-1) {
                dp[i][0] = dp[i - 1][0] - 1;
            } else {
                dp[i][0] = dp[i - 1][0] + 1;
            }
        }
        for (int j = 1; j < word2.length(); j++) {
            if (word1.charAt(0) == word2.charAt(j)) {
                dp[0][j] = j;
            } else {
                dp[0][j] = dp[0][j - 1] + 1;
            }
        }

        for (int i = 1; i < word1.length(); i++) {
            for (int j = 1; j < word2.length(); j++) {
                if (word1.charAt(i) == word2.charAt(j)) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + 1;
                }
            }
        }
        return dp[word1.length() - 1][word2.length() - 1];
    }
}
复杂度分析
  • 时间复杂度:O(n*m),其中 n 是word1的长度,m 是word2的长度
  • 空间复杂度:O(n*m)

官方版

这个初始化就有些不太一样叻~~

java 复制代码
class Solution {
    public int minDistance(String word1, String word2) {
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
        for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
        
        for (int i = 1; i < word1.length() + 1; i++) {
            for (int j = 1; j < word2.length() + 1; j++) {
                if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1];
                }else{
                    dp[i][j] = Math.min(dp[i - 1][j - 1] + 2,
                                        Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
                }
            }
        }
        
        return dp[word1.length()][word2.length()];
    }
}
复杂度分析
  • 时间复杂度:O(n*m),其中 n 是word1的长度,m 是word2的长度
  • 空间复杂度:O(n*m)

总结

这两种写法的主要差别其实就是在初始化的时候,可以看下他俩的 dp 数组

解法 1 的动规数组的含义是word1 取 [0, i] 范围内并且word2取[0, j] 的范围内时,使得 word1 和 word2 相同所需的最小步数是dp[i][j] ,而解法 2 的动规数组的含义是word1 取 [0, i-1] 范围内并且word2取[0, j-1] 的范围内时,使得 word1 和 word2 相同所需的最小步数是dp[i][j]

可以看下下图(示例 2:输入:word1 = "leetcode", word2 = "etco" 输出:4,第一行是解法 1 的 dp 数组,第二行是解法 2 的 dp 数组),或者自己推一遍就会清楚很多

在代码中的体现就是

所以如何定义其实并没有对错的问题,只是在处理逻辑上会有一些些差异~~

相关推荐
weixin_4723394618 分钟前
高效处理大体积Excel文件的Java技术方案解析
java·开发语言·excel
小毛驴8501 小时前
Linux 后台启动java jar 程序 nohup java -jar
java·linux·jar
DKPT1 小时前
Java桥接模式实现方式与测试方法
java·笔记·学习·设计模式·桥接模式
好奇的菜鸟3 小时前
如何在IntelliJ IDEA中设置数据库连接全局共享
java·数据库·intellij-idea
大千AI助手3 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
DuelCode4 小时前
Windows VMWare Centos Docker部署Springboot 应用实现文件上传返回文件http链接
java·spring boot·mysql·nginx·docker·centos·mybatis
优创学社24 小时前
基于springboot的社区生鲜团购系统
java·spring boot·后端
幽络源小助理4 小时前
SpringBoot基于Mysql的商业辅助决策系统设计与实现
java·vue.js·spring boot·后端·mysql·spring
猴哥源码4 小时前
基于Java+springboot 的车险理赔信息管理系统
java·spring boot