4.4 代码随想录第三十五天打卡

121. 买卖股票的最佳时机

(1)题目描述:

(2)解题思路:

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if (len == 0) return 0;
        vector<vector<int>> dp(len, vector<int>(2));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], -prices[i]);
            dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
        }
        return dp[len - 1][1];
    }
};

(3)总结:

1.确定dp数组(dp table)以及下标的含义

dp[i][0] 表示第i天持有股票所得最多现金 ,这里可能有同学疑惑,本题中只能买卖一次,持有股票之后哪还有现金呢?

其实一开始现金是0,那么加入第i天买入股票现金就是 -prices[i], 这是一个负数。
dp[i][1] 表示第i天不持有股票所得最多现金
注意这里说的是"持有","持有"不代表就是当天"买入"!也有可能是昨天就买入了,今天保持持有的状态
2.确定递推公式

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]

第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i]
那么dp[i][0]应该选所得现金最大的,所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来
第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]

第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]
同样dp[i][1]取最大的,dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

3.dp数组如何初始化

由递推公式 dp[i][0] = max(dp[i - 1][0], -prices[i]); 和 dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);可以看出

其基础都是要从dp[0][0]和dp[0][1]推导出来。
那么dp[0][0]表示第0天持有股票,此时的持有股票就一定是买入股票了,因为不可能有前一天推出来,所以dp[0][0] -= prices[0];
dp[0][1]表示第0天不持有股票,不持有股票那么现金就是0,所以dp[0][1] = 0;
4.确定遍历顺序

从递推公式可以看出dp[i]都是由dp[i - 1]推导出来的,那么一定是从前向后遍历。

122.买卖股票的最佳时机II

(1)题目描述:

(2)解题思路:

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        vector<vector<int>> dp(len, vector<int>(2, 0));
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for (int i = 1; i < len; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[len - 1][1];
    }
};

(3)总结:

1.本题与上一题的区别在于可以买卖多次,那在第i天买卖股票的时候,手头的现金可能已经不是0了
2.其余步骤都与上期一样

123.买卖股票的最佳时机III

(1)题目描述:

(2)解题思路:

cpp 复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};

(3)总结:

1.注:最多可以完成两笔交易(可以当天买卖)

1.确定dp数组以及下标的含义

一天一共就有五个状态,

没有操作 (其实我们也可以不设置这个状态)

第一次持有股票

第一次不持有股票

第二次持有股票

第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i][1]状态,有两个具体操作:

操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]

操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]

操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

相关推荐
wuqingshun3141599 分钟前
经典算法 约数之和
数据结构·c++·算法·蓝桥杯
溟洵10 分钟前
【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)
c语言·c++·算法
XYY36925 分钟前
搜索与图论 树的深度优先遍历 树的重心
算法
破东风41 分钟前
leetcode每日一题:替换子串得到平衡字符串
算法·leetcode·滑动窗口
Hole_up1 小时前
蓝桥杯真题-分糖果-题解
python·算法·职场和发展·蓝桥杯
十五年专注C++开发1 小时前
QT 中的元对象系统(五):QMetaObject::invokeMethod的使用和实现原理
开发语言·数据结构·c++·qt·设计模式
泛舟起晶浪1 小时前
特殊的质数肋骨--dfs+isp
算法·深度优先
GGBondlctrl1 小时前
【leetcode】记录与查找:哈希表的题型分析
算法·力扣·两数之和·字母异位词分组·存在重复字符2
熬夜学编程的小王1 小时前
【C++初阶篇】C++中c_str函数的全面解析
c语言·c++·c_str
视觉AI1 小时前
研究下适合部署在jeston上的深度学习类单目标跟踪算法
深度学习·算法·目标跟踪