AI Agent设计模式二:Parallelization

概念 :并行任务执行引擎

  • ✅ 优点:提升吞吐量,充分利用多核资源
  • ❌ 缺点:复杂度高,存在竞态条件风险
python 复制代码
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from typing import TypedDict
import os

# 初始化模型
client = ChatOpenAI(
    model="deepseek-r1",
    openai_api_key=os.environ["BAILIAN_API_KEY"],
    openai_api_base="https://dashscope.aliyuncs.com/compatible-mode/v1",
    streaming=False  # 禁用流式传输
)

# 定义实体类
class PhilosophyState(TypedDict):
    topic: str
    part0: str
    part1: str
    part2: str
    combined_output: str

meta_prompt = """
    针对如下问题进行思考,并得出结论。
    问题如下:{topic}
    你分析的角度如下:{aspect}
"""

# 道家观点解释
def part0_interpreter(state: PhilosophyState):
    print(f"道家视点解释开始 :{state['topic']}")

    prompt = meta_prompt.format(topic = state['topic'], aspect = "道家")
    response = client.invoke(prompt)

    print(f"道家观点:{response}")
    return {'part0': response}

# 儒学观点解释
def part1_interpreter(state: PhilosophyState):
    print(f"儒学观点解释开始 :{state['topic']}")
    prompt = meta_prompt.format(topic=state['topic'], aspect="儒学")
    response = client.invoke(prompt)
    print(f"儒学观点:{response}")
    return {'part1': response}

# 法学观点解释
def part2_interpreter(state: PhilosophyState):
    print(f"法学观点解释开始 :{state['topic']}")
    prompt = meta_prompt.format(topic=state['topic'], aspect="法学")
    response = client.invoke(prompt)
    print(f"法学观点:{response}")
    return {'part2': response}

def aggregate_results(state: PhilosophyState):
    combined = f"{state['part0']}\n{state['part1']}\n{state['part2']}"
    return {'combined_output': combined }

# 创建工作流
workflow = StateGraph(PhilosophyState)

# 添加节点
workflow.add_node("part0_interpreter", part0_interpreter)
workflow.add_node("part1_interpreter", part1_interpreter)
workflow.add_node("part2_interpreter", part2_interpreter)
workflow.add_node("aggregate_results", aggregate_results)

# 添加节点边
workflow.add_edge(START, "part0_interpreter")
workflow.add_edge(START, "part1_interpreter")
workflow.add_edge(START, "part2_interpreter")
workflow.add_edge("part0_interpreter", "aggregate_results")
workflow.add_edge("part1_interpreter", "aggregate_results")
workflow.add_edge("part2_interpreter", "aggregate_results")
workflow.add_edge("aggregate_results", END)

# 编译工作流
app = workflow.compile()

result = app.invoke({"topic": "治国之道在于平衡各方利益"})
print(result)

执行结果

相关推荐
小糯米60117 分钟前
C++顺序表和vector
开发语言·c++·算法
froginwe1122 分钟前
JavaScript 函数调用
开发语言
阔皮大师26 分钟前
INote轻量文本编辑器
java·javascript·python·c#
独望漫天星辰27 分钟前
C++ 多态深度解析:从语法规则到底层实现(附实战验证代码)
开发语言·c++
小法师爱分享30 分钟前
StickyNotes,简单便签超实用
java·python
深蓝电商API30 分钟前
处理字体反爬:woff字体文件解析实战
爬虫·python
开源技术32 分钟前
Claude Opus 4.6 发布,100万上下文窗口,越贵越好用
人工智能·python
张3蜂44 分钟前
深入理解 Python 的 frozenset:为什么要有“不可变集合”?
前端·python·spring
无小道1 小时前
Qt——事件简单介绍
开发语言·前端·qt
devmoon1 小时前
在 Paseo 测试网上获取 Coretime:On-demand 与 Bulk 的完整实操指南
开发语言·web3·区块链·测试用例·智能合约·solidity