AI Agent设计模式二:Parallelization

概念 :并行任务执行引擎

  • ✅ 优点:提升吞吐量,充分利用多核资源
  • ❌ 缺点:复杂度高,存在竞态条件风险
python 复制代码
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from typing import TypedDict
import os

# 初始化模型
client = ChatOpenAI(
    model="deepseek-r1",
    openai_api_key=os.environ["BAILIAN_API_KEY"],
    openai_api_base="https://dashscope.aliyuncs.com/compatible-mode/v1",
    streaming=False  # 禁用流式传输
)

# 定义实体类
class PhilosophyState(TypedDict):
    topic: str
    part0: str
    part1: str
    part2: str
    combined_output: str

meta_prompt = """
    针对如下问题进行思考,并得出结论。
    问题如下:{topic}
    你分析的角度如下:{aspect}
"""

# 道家观点解释
def part0_interpreter(state: PhilosophyState):
    print(f"道家视点解释开始 :{state['topic']}")

    prompt = meta_prompt.format(topic = state['topic'], aspect = "道家")
    response = client.invoke(prompt)

    print(f"道家观点:{response}")
    return {'part0': response}

# 儒学观点解释
def part1_interpreter(state: PhilosophyState):
    print(f"儒学观点解释开始 :{state['topic']}")
    prompt = meta_prompt.format(topic=state['topic'], aspect="儒学")
    response = client.invoke(prompt)
    print(f"儒学观点:{response}")
    return {'part1': response}

# 法学观点解释
def part2_interpreter(state: PhilosophyState):
    print(f"法学观点解释开始 :{state['topic']}")
    prompt = meta_prompt.format(topic=state['topic'], aspect="法学")
    response = client.invoke(prompt)
    print(f"法学观点:{response}")
    return {'part2': response}

def aggregate_results(state: PhilosophyState):
    combined = f"{state['part0']}\n{state['part1']}\n{state['part2']}"
    return {'combined_output': combined }

# 创建工作流
workflow = StateGraph(PhilosophyState)

# 添加节点
workflow.add_node("part0_interpreter", part0_interpreter)
workflow.add_node("part1_interpreter", part1_interpreter)
workflow.add_node("part2_interpreter", part2_interpreter)
workflow.add_node("aggregate_results", aggregate_results)

# 添加节点边
workflow.add_edge(START, "part0_interpreter")
workflow.add_edge(START, "part1_interpreter")
workflow.add_edge(START, "part2_interpreter")
workflow.add_edge("part0_interpreter", "aggregate_results")
workflow.add_edge("part1_interpreter", "aggregate_results")
workflow.add_edge("part2_interpreter", "aggregate_results")
workflow.add_edge("aggregate_results", END)

# 编译工作流
app = workflow.compile()

result = app.invoke({"topic": "治国之道在于平衡各方利益"})
print(result)

执行结果

相关推荐
豆芽8194 分钟前
决策树(DecisionTree)
python·决策树·机器学习·pyqt·sklearn
努力犯错玩AI6 分钟前
Llama 4 来了!AI 快站助你一键极速下载,抢先体验 MoE + 多模态 + 超长上下文
人工智能·后端·python
Pacify_The_North11 分钟前
【C++进阶五】list深度剖析
开发语言·c++·算法·list
eqwaak011 分钟前
DrissionPage高级技巧:从爬虫到自动化测试
人工智能·爬虫·python·语言模型·自然语言处理·drissionpage
咖啡の猫14 分钟前
JavaScript 简单类型与复杂类型
开发语言·javascript
都叫我大帅哥31 分钟前
代码世界的「万能转接头」:适配器模式的跨界艺术
java·后端·设计模式
创新技术阁32 分钟前
FastAPI核心技巧大公开:深入探索路由与视图的奥秘
后端·python
Blueshy33 分钟前
【python基础】weakref的初次遇见
python
前端开发张小七42 分钟前
11.Python设计模式:单例模式与工厂模式实战指南
前端·python
前端开发张小七42 分钟前
10. Python闭包:优雅的状态封装与实用技巧
python