AI Agent设计模式二:Parallelization

概念 :并行任务执行引擎

  • ✅ 优点:提升吞吐量,充分利用多核资源
  • ❌ 缺点:复杂度高,存在竞态条件风险
python 复制代码
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from typing import TypedDict
import os

# 初始化模型
client = ChatOpenAI(
    model="deepseek-r1",
    openai_api_key=os.environ["BAILIAN_API_KEY"],
    openai_api_base="https://dashscope.aliyuncs.com/compatible-mode/v1",
    streaming=False  # 禁用流式传输
)

# 定义实体类
class PhilosophyState(TypedDict):
    topic: str
    part0: str
    part1: str
    part2: str
    combined_output: str

meta_prompt = """
    针对如下问题进行思考,并得出结论。
    问题如下:{topic}
    你分析的角度如下:{aspect}
"""

# 道家观点解释
def part0_interpreter(state: PhilosophyState):
    print(f"道家视点解释开始 :{state['topic']}")

    prompt = meta_prompt.format(topic = state['topic'], aspect = "道家")
    response = client.invoke(prompt)

    print(f"道家观点:{response}")
    return {'part0': response}

# 儒学观点解释
def part1_interpreter(state: PhilosophyState):
    print(f"儒学观点解释开始 :{state['topic']}")
    prompt = meta_prompt.format(topic=state['topic'], aspect="儒学")
    response = client.invoke(prompt)
    print(f"儒学观点:{response}")
    return {'part1': response}

# 法学观点解释
def part2_interpreter(state: PhilosophyState):
    print(f"法学观点解释开始 :{state['topic']}")
    prompt = meta_prompt.format(topic=state['topic'], aspect="法学")
    response = client.invoke(prompt)
    print(f"法学观点:{response}")
    return {'part2': response}

def aggregate_results(state: PhilosophyState):
    combined = f"{state['part0']}\n{state['part1']}\n{state['part2']}"
    return {'combined_output': combined }

# 创建工作流
workflow = StateGraph(PhilosophyState)

# 添加节点
workflow.add_node("part0_interpreter", part0_interpreter)
workflow.add_node("part1_interpreter", part1_interpreter)
workflow.add_node("part2_interpreter", part2_interpreter)
workflow.add_node("aggregate_results", aggregate_results)

# 添加节点边
workflow.add_edge(START, "part0_interpreter")
workflow.add_edge(START, "part1_interpreter")
workflow.add_edge(START, "part2_interpreter")
workflow.add_edge("part0_interpreter", "aggregate_results")
workflow.add_edge("part1_interpreter", "aggregate_results")
workflow.add_edge("part2_interpreter", "aggregate_results")
workflow.add_edge("aggregate_results", END)

# 编译工作流
app = workflow.compile()

result = app.invoke({"topic": "治国之道在于平衡各方利益"})
print(result)

执行结果

相关推荐
我笑了OvO31 分钟前
C++类和对象(1)
java·开发语言·c++·类和对象
无咎.lsy36 分钟前
裸K初级篇 - (一)蜡烛突破信号
python
可触的未来,发芽的智生2 小时前
新奇特:神经网络的集团作战思维,权重共享层的智慧
人工智能·python·神经网络·算法·架构
渡我白衣3 小时前
C++ 异常处理全解析:从语法到设计哲学
开发语言·c++·面试
jerryinwuhan3 小时前
Python数据挖掘之基础分类模型_支持向量机(SVM)
python·支持向量机·数据挖掘
StarPrayers.3 小时前
基于PyTorch的CIFAR10加载与TensorBoard可视化实践
人工智能·pytorch·python·深度学习·机器学习
青草地溪水旁3 小时前
设计模式(C++)详解——观察者模式(Observer)(1)
c++·观察者模式·设计模式
深蓝电商API3 小时前
实战破解前端渲染:当 Requests 无法获取数据时(Selenium/Playwright 入门)
前端·python·selenium·playwright
悦悦子a啊3 小时前
[Java]PTA: jmu-Java-02基本语法-08-ArrayList入门
java·开发语言·算法
程序边界4 小时前
AI时代如何高效学习Python:从零基础到项目实战de封神之路(2025升级版)
人工智能·python·学习