AI Agent设计模式二:Parallelization

概念 :并行任务执行引擎

  • ✅ 优点:提升吞吐量,充分利用多核资源
  • ❌ 缺点:复杂度高,存在竞态条件风险
python 复制代码
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START, END
from typing import TypedDict
import os

# 初始化模型
client = ChatOpenAI(
    model="deepseek-r1",
    openai_api_key=os.environ["BAILIAN_API_KEY"],
    openai_api_base="https://dashscope.aliyuncs.com/compatible-mode/v1",
    streaming=False  # 禁用流式传输
)

# 定义实体类
class PhilosophyState(TypedDict):
    topic: str
    part0: str
    part1: str
    part2: str
    combined_output: str

meta_prompt = """
    针对如下问题进行思考,并得出结论。
    问题如下:{topic}
    你分析的角度如下:{aspect}
"""

# 道家观点解释
def part0_interpreter(state: PhilosophyState):
    print(f"道家视点解释开始 :{state['topic']}")

    prompt = meta_prompt.format(topic = state['topic'], aspect = "道家")
    response = client.invoke(prompt)

    print(f"道家观点:{response}")
    return {'part0': response}

# 儒学观点解释
def part1_interpreter(state: PhilosophyState):
    print(f"儒学观点解释开始 :{state['topic']}")
    prompt = meta_prompt.format(topic=state['topic'], aspect="儒学")
    response = client.invoke(prompt)
    print(f"儒学观点:{response}")
    return {'part1': response}

# 法学观点解释
def part2_interpreter(state: PhilosophyState):
    print(f"法学观点解释开始 :{state['topic']}")
    prompt = meta_prompt.format(topic=state['topic'], aspect="法学")
    response = client.invoke(prompt)
    print(f"法学观点:{response}")
    return {'part2': response}

def aggregate_results(state: PhilosophyState):
    combined = f"{state['part0']}\n{state['part1']}\n{state['part2']}"
    return {'combined_output': combined }

# 创建工作流
workflow = StateGraph(PhilosophyState)

# 添加节点
workflow.add_node("part0_interpreter", part0_interpreter)
workflow.add_node("part1_interpreter", part1_interpreter)
workflow.add_node("part2_interpreter", part2_interpreter)
workflow.add_node("aggregate_results", aggregate_results)

# 添加节点边
workflow.add_edge(START, "part0_interpreter")
workflow.add_edge(START, "part1_interpreter")
workflow.add_edge(START, "part2_interpreter")
workflow.add_edge("part0_interpreter", "aggregate_results")
workflow.add_edge("part1_interpreter", "aggregate_results")
workflow.add_edge("part2_interpreter", "aggregate_results")
workflow.add_edge("aggregate_results", END)

# 编译工作流
app = workflow.compile()

result = app.invoke({"topic": "治国之道在于平衡各方利益"})
print(result)

执行结果

相关推荐
laocooon5238578869 小时前
C++中的安全指针(智能指针)
开发语言·c++
咸鱼加辣9 小时前
【python面试题】LRUCache
开发语言·python
LitchiCheng9 小时前
WSL2 中 pynput 无法捕获按键输入?
开发语言·python
中年程序员一枚9 小时前
Python 中处理视频添加 / 替换音频
开发语言·python·音视频
yuuki2332339 小时前
【C++】模板初阶
java·开发语言·c++
爱吃大芒果9 小时前
Flutter 路由进阶:命名路由、动态路由与路由守卫实现
开发语言·javascript·flutter·华为·ecmascript
程序员爱钓鱼9 小时前
BlackHole 2ch:macOS无杂音录屏与系统音频采集完整技术指南
前端·后端·设计模式
世转神风-9 小时前
qt-lambda信号槽机制
开发语言·qt
Katecat996639 小时前
基于YOLO11-C3k2-JDPM的车牌识别系统优化与实现
python
SmoothSailingT9 小时前
C#——单例模式
开发语言·单例模式·c#