医学分割新标杆!双路径PGM-UNet:CNN+Mamba实现病灶毫厘级捕捉

一、 引言:医学图像分割的挑战与机遇

医学图像分割是辅助疾病诊断和治疗规划的关键技术,但传统方法常受限于复杂病理特征和微小结构。现有深度学习模型(如CNN和Transformer)虽各有优势,但CNN难以建模长距离依赖,而Transformer的计算复杂度高且易忽略局部细节。

最新突破:来自北京理工大学的研究团队提出了一种双路径融合模型PGM-UNet,结合CNN的局部感知力与Mamba的全局建模能力,显著提升了分割精度与效率,相关成果已发表于顶会论文。

二、 核心创新:PGM-UNet的三大技术亮点

  1. 提示引导的Mamba模块(PGRM)
  • 动态视觉提示:从原始输入中提取关键线索(如病灶边缘),指导Mamba更精准捕捉全局信息。

  • 即插即用:该模块可灵活嵌入其他任务,优化信息提取流程。

  1. 双路径融合架构(LG-Net)
  • 并行分支设计:CNN路径提取局部细节(如血管纹理),Mamba路径建模全局上下文(如病灶形态)。

  • 注意力融合(MAFM):通过通道注意力机制动态加权局部与全局特征,抑制冗余信息,聚焦关键区域。

  1. 多尺度信息提取模块(MIEM)
  • 空洞卷积+KAN网络:利用不同扩张率的卷积捕获多尺度特征,结合KAN网络的强非线性表达能力,增强模型对复杂结构的解析力。

三、 实验结果:全面超越SOTA模型

  • 皮肤病变分割(ISIC-2017/2018):平均DSC达87.69%,较Mamba模型AC-MambaSeg提升1.16%。

  • 血管分割(DIAS/DRIVE):在视网膜血管分割中,敏感度(Sen)提升0.77%,精准捕捉毛细血管网络。

  • 泛化性能:在跨数据集测试(ISIC-2018→PH2)中,DSC仍保持92.01%,展现强鲁棒性。

四、 技术价值与未来展望

  • 临床意义:为皮肤病、血管疾病等提供高精度自动化诊断工具,降低人工标注成本。

  • 局限与改进:当前模型对毛发遮挡(如皮肤图像)和密集毛细血管的细节处理仍有提升空间,未来计划引入更高效注意力机制。

  • 扩展应用:研究团队计划基于提示学习开发"全能型"医学分割模型,适配多模态数据与跨设备场景。

五、 结语:AI赋能精准医疗的新里程碑

PGM-UNet通过创新的双路径设计和提示学习,为医学图像分割树立了新标杆。其高效性与精准性不仅推动学术进展,更为临床落地提供了可靠工具。未来,随着模型优化与多任务扩展,AI辅助诊断的边界将进一步拓宽。

论文地址:https://arxiv.org/abs/2503.19589

相关推荐
大模型真好玩23 分钟前
大模型Agent开发框架哪家强?12项Agent开发框架入门与选型
人工智能·agent·mcp
Cx330❀26 分钟前
《C++ STL:vector类(下)》:攻克 C++ Vector 的迭代器失效陷阱:从源码层面详解原理与解决方案
开发语言·数据结构·c++·经验分享·算法
常州晟凯电子科技33 分钟前
君正T32开发笔记之IVSP版本环境搭建和编译
人工智能·笔记·物联网
Francek Chen34 分钟前
【深度学习计算机视觉】09:语义分割和数据集
人工智能·pytorch·深度学习·计算机视觉·数据集·语义分割
sealaugh3243 分钟前
AI(学习笔记第九课) 使用langchain的MultiQueryRetriever和indexing
人工智能·笔记·学习
OopsOutOfMemory1 小时前
LangChain源码分析(一)- LLM大语言模型
人工智能·语言模型·langchain·aigc
bawangtianzun1 小时前
树的重心与直径 性质
数据结构·c++·学习·算法
wuli玉shell1 小时前
机器学习、数据科学、深度学习、神经网络的区别与联系
深度学习·神经网络·机器学习
ASIAZXO1 小时前
机器学习——SVM支持向量机详解
人工智能·机器学习·支持向量机
Prettybritany1 小时前
文本引导的图像融合方法
论文阅读·图像处理·人工智能·深度学习·计算机视觉