Spark-SQL核心编程(一)

一、Spark-SQL 基础概念

1.定义与起源:Spark SQL 是 Spark 用于结构化数据处理的模块,前身是 Shark。Shark 基于 Hive 开发,提升了 SQL-on-Hadoop 的性能,但因对 Hive 依赖过多限制了 Spark 发展,后被 SparkSQL 取代,同时产生了 SparkSQL 和 Hive on Spark 两个发展方向。

2.特点:易整合,可无缝整合 SQL 查询和 Spark 编程;统一数据访问,以相同方式连接不同数据源;兼容 Hive,能在已有仓库上运行 SQL 或 HQL;支持标准数据连接,可通过 JDBC 或 ODBC 连接。

二、Spark-SQL 核心编程

1.SparkSession:是 Spark 最新的 SQL 查询起始点,封装了 SparkContext,整合了 SQLContext 和 HiveContext 的功能,在 spark-shell 中会自动创建名为 spark 的 SparkSession 对象。

2.DataFrame 操作

DataFrame 是一种以 RDD 为基础的分布式数据集,类似于传统数据库中 的二维表格

2.1创建方式:可通过 Spark 数据源(如 JSON 文件)、现有 RDD 转换或 Hive Table 查询返回创建。从文件读取数据时,数字类型默认以 bigint 接收 。

2.2查询语法:SQL 语法需借助临时视图或全局视图,先创建 DataFrame 再创建视图,然后用 SQL 语句查询;

DSL 语法可直接操作 DataFrame,无需创建视图,支持查看 Schema、选择列、运算、过滤、分组等操作。

(1)创建一个 DataFrame

( 2)查看schema信息

(3)只查看"username"列数据

(4)查看"username"列数据以及"age+1"数据

df.select('username, 'age + 1).show()

(5)查看"age"大于"18"的数据

(6)按照"age"分组,查看数据条数

与 RDD 转换:RDD 转 DataFrame 可通过引入import spark.implicits._(spark-shell 中自动导入),并借助样例类实现;DataFrame 可直接获取内部 RDD,其存储类型为 Row。

RDD 转换为 DataFrame

DataFrame 转换为 RDD

3.DataSet 操作

DataSet 是分布式数据集合

3.1创建方式:可使用样例类序列或基本类型序列创建,实际中常通过 RDD 得到 DataSet。

(1)使用样例类序列创建 DataSet

(2)使用基本类型的序列创建 DataSet

3.2与 RDD 转换:包含 case 类的 RDD 可自动转换为 DataSet,DataSet 也可直接获取内部 RDD

RDD 转换为 DataSet

DataSet 转换为 RDD

3.3与 DataFrame 转换:DataFrame 是 DataSet 的特例(DataFrame = DataSet[Row]),二者可相互转换,DataFrame 转 DataSet 需借助样例类,DataSet 转 DataFrame 使用toDF方法。

DataFrame 转换为 DataSet

DataSet 转换为 DataFrame

三、RDD、DataFrame、DataSet 关系

产生版本:RDD 在 Spark1.0 出现,DataFrame 在 Spark1.3 出现,DataSet 在 Spark1.6 出现。

共性:都是 Spark 平台下的分布式弹性数据集,具有惰性机制,有共同函数,操作时多需import spark.implicits._,会自动缓存运算,都有分区概念,DataFrame 和 DataSet 可通过模式匹配获取字段信息。

区别:RDD 常与 spark mllib 使用,不支持 sparksql 操作;DataFrame 每行类型为 Row,需解析获取字段值,与 DataSet 支持 SparkSQL 操作和便捷保存方式;DataSet 是强类型,每行数据类型取决于自定义 case class ,与 DataFrame 成员函数相同但每行数据类型不同。

相关推荐
Elastic 中国社区官方博客1 分钟前
Elasticsearch:AI 助理 - 从通才到专才
大数据·数据库·人工智能·神经网络·elasticsearch·搜索引擎·全文检索
weisian15142 分钟前
中间件--ClickHouse-6--SQL基础(类似Mysql,存在差异)
sql·clickhouse·中间件
CopyLower1 小时前
Elasticsearch 查询优化:从原理到实践的全面指南
大数据·elasticsearch·搜索引擎
Gvemis⁹1 小时前
Spark-SQL
大数据·sql·spark
落寞的魚丶5 小时前
2022年全国职业院校技能大赛 高职组 “大数据技术与应用” 赛项赛卷(3卷)任务书
大数据·高职组·2022全国职业技能大赛·大数据技术与应用
神奇的黄豆7 小时前
spark-sql学习内容总结
大数据·sql·spark
恒拓高科WorkPlus8 小时前
BeeWorks:打造安全可控的企业内网即时通讯平台
大数据·人工智能·安全
恒拓高科WorkPlus10 小时前
一款安全好用的企业即时通讯平台,支持统一门户
大数据·人工智能·安全
Debug_TheWorld10 小时前
Kafka学习
大数据·中间件
迷人的小荔枝11 小时前
spark-core
spark