DEA-Net:基于细节增强卷积和内容引导注意力的单图像去雾

IEEE TIP 2024 | DEA-Net:基于细节增强卷积和内容引导注意力的单图像去雾 DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention

paper name: DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention

论文介绍:提出一种单图像去雾网络DEA-Net,DEA-Net是一种有监督式学习,网络在以下几点有创新之处:

1.使用多种差分卷积(中心差分卷积,角度差分卷积,水平差分卷积,垂直差分卷积)来替换普通的卷积

2.提出内容引导注意(content-guided attention),它是由空间注意力(Spatial attention)和通道注意力(Channel attention)

3.提出基于内容引导注意的混合融合方案,提出一种基于遗传算法的混合方案,通过学习空间权重来调整特征。

method

1.差分卷积

论文中大量使用了四种差分卷积来替换普通的卷积,其可以更好的提取出边缘特征。中心差分卷积的示例图如图1所示。中心差分卷积的主要操作为把输入矩阵x每个元素都减去x5,然后再与对于的卷积核进行运算。其他三种差分卷积类似,只是差分操作不一样。水平差分卷积如图2所示。

图1 中心差分卷积

图2 水平差分卷积

2.内容引导注意(CGA)

内容引导注意由空间注意力(Spatial attention)和通道注意力(Channel attention),其流程图如图3所示。

图中GMP和GAP分别代表最大池化和平均池化操作。channel shuffle操作是通过重新排列卷积层输出的通道。这样可以促进特征之间的交互,从而提高模型的表达能力。

图3 内容引导注意力

3.提出基于内容引导注意的混合融合方案

一种基于遗传算法的混合方案,通过学习空间权重来调整特征。论文中所谓的学习的空间权重就是将CGA的输出结果W。用得到的空间权重w与Low-level features和High-level features进行乘法相加得到。

图4 DEA-Net网络结构图

相关推荐
那个村的李富贵1 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
腾讯云开发者3 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR3 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky4 小时前
大模型生成PPT的技术原理
人工智能
禁默4 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切5 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒5 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站5 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能
那个村的李富贵5 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
二十雨辰5 小时前
[python]-AI大模型
开发语言·人工智能·python