DEA-Net:基于细节增强卷积和内容引导注意力的单图像去雾

IEEE TIP 2024 | DEA-Net:基于细节增强卷积和内容引导注意力的单图像去雾 DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention

paper name: DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention

论文介绍:提出一种单图像去雾网络DEA-Net,DEA-Net是一种有监督式学习,网络在以下几点有创新之处:

1.使用多种差分卷积(中心差分卷积,角度差分卷积,水平差分卷积,垂直差分卷积)来替换普通的卷积

2.提出内容引导注意(content-guided attention),它是由空间注意力(Spatial attention)和通道注意力(Channel attention)

3.提出基于内容引导注意的混合融合方案,提出一种基于遗传算法的混合方案,通过学习空间权重来调整特征。

method

1.差分卷积

论文中大量使用了四种差分卷积来替换普通的卷积,其可以更好的提取出边缘特征。中心差分卷积的示例图如图1所示。中心差分卷积的主要操作为把输入矩阵x每个元素都减去x5,然后再与对于的卷积核进行运算。其他三种差分卷积类似,只是差分操作不一样。水平差分卷积如图2所示。

图1 中心差分卷积

图2 水平差分卷积

2.内容引导注意(CGA)

内容引导注意由空间注意力(Spatial attention)和通道注意力(Channel attention),其流程图如图3所示。

图中GMP和GAP分别代表最大池化和平均池化操作。channel shuffle操作是通过重新排列卷积层输出的通道。这样可以促进特征之间的交互,从而提高模型的表达能力。

图3 内容引导注意力

3.提出基于内容引导注意的混合融合方案

一种基于遗传算法的混合方案,通过学习空间权重来调整特征。论文中所谓的学习的空间权重就是将CGA的输出结果W。用得到的空间权重w与Low-level features和High-level features进行乘法相加得到。

图4 DEA-Net网络结构图

相关推荐
大嘴带你水论文7 分钟前
震惊!仅用10张照片就能随意编辑3D人脸?韩国KAIST最新黑科技FFaceNeRF解析!
论文阅读·人工智能·python·科技·计算机视觉·3d·transformer
IT_陈寒14 分钟前
🔥3分钟掌握JavaScript性能优化:从V8引擎原理到5个实战提速技巧
前端·人工智能·后端
格林威20 分钟前
棱镜的技术加持:线扫相机如何同时拍RGB和SWIR?
人工智能·深度学习·数码相机·yolo·计算机视觉
JoinApper29 分钟前
小白学OpenCV系列3-图像算数运算
人工智能·opencv·计算机视觉
张小九9930 分钟前
ThermoSeek:热稳定蛋白数据库
人工智能
wzy-66635 分钟前
DINOv3 新颖角度解释
人工智能
jie*1 小时前
小杰机器学习(two)——导数、损失函数、斜率极值最值、微分规则、切平面与偏导数、梯度。
人工智能·机器学习
Niuguangshuo1 小时前
深度学习:归一化技术
人工智能·深度学习
302AI1 小时前
Claude 断供中国之际,Kimi-K2-0905 低调上线:时势造英雄
人工智能·llm·ai编程
却道天凉_好个秋2 小时前
计算机视觉(九):图像轮廓
人工智能·opencv·计算机视觉·图像轮廓