从M个元素中查找最小的N个元素时,使用大顶堆的效率比使用小顶堆更高,为什么?

我们有一个长度为 M 的数组,现在我们想从中找出 最小的 N 个元素。例如:

cpp 复制代码
int a[10] = {12, 3, 5, 7, 19, 0, 8, 2, 4, 10};

从中找出 最小的 4 个元素


正确方法:使用大小为 N 的「大顶堆」

原因分析:

我们想保留最小的 4 个元素,因此可以使用一个大顶堆,堆的作用是"维护最小的 N 个数"。

思路如下:

  1. 初始化:先把前 4 个数放入堆中 → 12, 3, 5, 7
    • 堆顶为最大值 12,表示目前"最小的 4 个元素"中最大的那个是 12。
  2. 从第 5 个数开始往后遍历数组,只要当前数 < 堆顶,就替换堆顶
  3. 最终堆中留下的是"最小的 4 个数"。

具体步骤(维护一个大顶堆):

初始数组:

cpp 复制代码
{12, 3, 5, 7, 19, 0, 8, 2, 4, 10}

步骤:

  • 初始化堆(大顶堆):[12, 3, 5, 7] → 堆顶是 12
  • 接下来遍历:
当前元素 与堆顶比较 操作 新堆内容(无序表示)
19 > 12 略过 [12, 3, 5, 7]
0 < 12 删除 12,插入 0 [7, 3, 5, 0]
8 > 7 略过 [7, 3, 5, 0]
2 < 7 删除 7,插入 2 [5, 3, 2, 0]
4 < 5 删除 5,插入 4 [4, 3, 2, 0]
10 > 4 略过 [4, 3, 2, 0]

最终堆中元素:[0, 2, 3, 4]


如果用小顶堆会怎么样?

假如你误用了小顶堆,初始堆是 [3, 12, 5, 7],堆顶是 3。

你遍历后面的元素时,堆顶一直是最小的那个,永远不会被替换掉。

问题是:你不知道当前 4 个是不是最小的 4 个,因为最大值还留在里面!

你得存下所有 M 个元素,再从小顶堆中取前 N 个,等于多维护了不必要的 M - N 个元素,效率大大降低。


总结口诀:

🔹 找最小的 N 个数 → 用大小为 N 的大顶堆 ,因为你要踢走大的。

🔹 找最大的 N 个数 → 用大小为 N 的小顶堆,因为你要踢走小的。


相关推荐
黑色的山岗在沉睡26 分钟前
LeetCode 189. 轮转数组
java·算法·leetcode
墨染点香27 分钟前
LeetCode 刷题【65. 有效数字】
算法·leetcode·职场和发展
源代码•宸1 小时前
Leetcode—2749. 得到整数零需要执行的最少操作数【中等】(__builtin_popcountl)
c++·经验分享·算法·leetcode·位运算
用户4822137167751 小时前
深度学习——AlexNet网络结构
算法
豆沙沙包?1 小时前
2025年- H118-Lc86. 分隔链表(链表)--Java版
java·数据结构·链表
张子夜 iiii2 小时前
传统神经网络实现-----手写数字识别(MNIST)项目
人工智能·pytorch·python·深度学习·算法
lingggggaaaa2 小时前
小迪安全v2023学习笔记(七十八讲)—— 数据库安全&Redis&CouchDB&H2database&未授权&CVE
redis·笔记·学习·算法·安全·网络安全·couchdb
得意霄尽欢2 小时前
Redis之核心数据结构浅析
数据结构·redis
pusue_the_sun2 小时前
C语言强化训练(12)
c语言·开发语言·算法