循环神经网络(RNN)

循环神经网络(RNN)基本原理

一、RNN核心思想

目标 :处理序列数据(如文本、时间序列),通过循环连接 传递隐藏状态,捕捉序列的动态依赖关系。
核心特性

  • 参数共享:所有时间步共享同一组权重。
  • 记忆能力:隐藏状态 h t h_t ht 编码历史信息。

二、网络结构与数学公式

1. RNN展开结构

  • 输入 :时间步 t t t 的输入 x t x_t xt(如词向量)。
  • 隐藏状态 : h t h_t ht 融合当前输入与历史信息。
  • 输出 : y t y_t yt 基于 h t h_t ht 生成预测。

2. 数学公式

  • 隐藏状态更新
    h t = tanh ⁡ ( W h h h t − 1 + W x h x t + b h ) h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t + b_h) ht=tanh(Whhht−1+Wxhxt+bh)

    • W h h ∈ R d h × d h W_{hh} \in \mathbb{R}^{d_h \times d_h} Whh∈Rdh×dh: 隐藏状态权重
    • W x h ∈ R d x × d h W_{xh} \in \mathbb{R}^{d_x \times d_h} Wxh∈Rdx×dh: 输入权重
    • tanh ⁡ \tanh tanh: 激活函数(压缩到[-1,1])
  • 输出计算
    y t = W h y h t + b y y_t = W_{hy} h_t + b_y yt=Whyht+by

    • W h y ∈ R d h × d y W_{hy} \in \mathbb{R}^{d_h \times d_y} Why∈Rdh×dy: 输出权重

三、PyTorch代码实现

1. RNN模型定义

python 复制代码
import torch
import torch.nn as nn

class SimpleRNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(SimpleRNN, self).__init__()
        self.hidden_size = hidden_size
        
        # 定义权重参数
        self.W_hh = nn.Parameter(torch.randn(hidden_size, hidden_size))
        self.W_xh = nn.Parameter(torch.randn(input_size, hidden_size))
        self.W_hy = nn.Parameter(torch.randn(hidden_size, output_size))
        self.b_h = nn.Parameter(torch.zeros(hidden_size))
        self.b_y = nn.Parameter(torch.zeros(output_size))

    def forward(self, x_seq):
        # x_seq形状: (seq_length, batch_size, input_size)
        batch_size = x_seq.size(1)
        h = torch.zeros(batch_size, self.hidden_size)  # 初始隐藏状态
        
        outputs = []
        for x_t in x_seq:  # 按时间步迭代
            # 更新隐藏状态
            h = torch.tanh(
                torch.mm(h, self.W_hh) + 
                torch.mm(x_t, self.W_xh) + 
                self.b_h
            )
            # 计算输出
            y_t = torch.mm(h, self.W_hy) + self.b_y
            outputs.append(y_t)
        
        return torch.stack(outputs), h
相关推荐
安徽正LU o561-6o623o71 天前
露-数显式脑立体定位仪 大动物定位仪 小动物脑定位仪
人工智能
andwhataboutit?1 天前
pytorch-CycleGAN-and-pix2pix学习
人工智能·pytorch·学习
渡我白衣1 天前
计算机组成原理(7):定点数的编码表示
汇编·人工智能·嵌入式硬件·网络协议·机器学习·硬件工程
vv_5011 天前
大模型 langchain-组件学习(中)
人工智能·学习·langchain·大模型
╭⌒若隐_RowYet——大数据1 天前
AI Agent(智能体)简介
人工智能·ai·agent
Evand J1 天前
【课题推荐】基于视觉(像素坐标)与 IMU 的目标/自身运动估计(Visual-Inertial Odometry, VIO),课题介绍与算法示例
人工智能·算法·计算机视觉
麦麦大数据1 天前
F051-vue+flask企业债务舆情风险预测分析系统
前端·vue.js·人工智能·flask·知识图谱·企业信息·债务分析
haiyu_y1 天前
Day 45 预训练模型
人工智能·python·深度学习
【建模先锋】1 天前
基于CNN-SENet+SHAP分析的回归预测模型!
人工智能·python·回归·cnn·回归预测·特征可视化·shap 可视化分析
Robot侠1 天前
视觉语言导航从入门到精通(四)
人工智能·深度学习·transformer·rag·视觉语言导航·vln