深入探索Spark-Streaming:从Kafka数据源创建DStream

在大数据处理领域,Spark-Streaming是一个强大的实时流处理框架,而Kafka作为高性能的分布式消息队列,二者结合能实现高效的数据处理。今天就来聊聊Spark-Streaming中从Kafka数据源创建DStream的相关知识。

早期,Spark-Streaming通过ReceiverAPI从Kafka接收数据。这种方式需要专门的Executor接收数据再转发给其他Executor计算。但问题也很明显,如果接收数据的Executor速度快于计算的Executor,计算节点就容易内存溢出,所以现在已经不太适用了。

当下,DirectAPI成为主流选择。它让计算的Executor主动消费Kafka数据,速度能自主把控。以Kafka 0-10 Direct模式为例,使用时先导入 spark-streaming-kafka-0-10_2.12 依赖,接着配置Kafka的相关参数,像Kafka集群地址、消费者组ID、反序列化器等。然后就能通过 KafkaUtils.createDirectStream 方法创建DStream,后续对数据进行处理,比如常见的wordCount操作。

实际操作时,得先启动Kafka集群,再开启Kafka生产者发送数据。运行Spark-Streaming程序,就能实时接收并处理Kafka生产的数据。处理完成后,还能通过 kafka-consumer-groups.sh 命令查看消费进度,了解数据处理情况。

相关推荐
Aurora_NeAr5 小时前
Spark SQL架构及高级用法
大数据·后端·spark
百度Geek说1 天前
搜索数据建设系列之数据架构重构
数据仓库·重构·架构·spark·dubbo
大数据CLUB2 天前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
Cachel wood11 天前
Spark教程6:Spark 底层执行原理详解
大数据·数据库·分布式·计算机网络·spark
大数据CLUB11 天前
基于pyspark的北京历史天气数据分析及可视化_离线
大数据·hadoop·数据挖掘·数据分析·spark
Cachel wood12 天前
Spark教程1:Spark基础介绍
大数据·数据库·数据仓库·分布式·计算机网络·spark
张昕玥2023032211912 天前
Spark应用开发--WordCount实战
大数据·spark
阳光下是个孩子12 天前
基于 Spark 实现 COS 海量数据处理
大数据·分布式·spark
GawynKing12 天前
Apache SeaTunnel Spark引擎执行流程源码分析
spark·源码·seatunnel
heart000_112 天前
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
大数据·分布式·spark