深入探索Spark-Streaming:从Kafka数据源创建DStream

在大数据处理领域,Spark-Streaming是一个强大的实时流处理框架,而Kafka作为高性能的分布式消息队列,二者结合能实现高效的数据处理。今天就来聊聊Spark-Streaming中从Kafka数据源创建DStream的相关知识。

早期,Spark-Streaming通过ReceiverAPI从Kafka接收数据。这种方式需要专门的Executor接收数据再转发给其他Executor计算。但问题也很明显,如果接收数据的Executor速度快于计算的Executor,计算节点就容易内存溢出,所以现在已经不太适用了。

当下,DirectAPI成为主流选择。它让计算的Executor主动消费Kafka数据,速度能自主把控。以Kafka 0-10 Direct模式为例,使用时先导入 spark-streaming-kafka-0-10_2.12 依赖,接着配置Kafka的相关参数,像Kafka集群地址、消费者组ID、反序列化器等。然后就能通过 KafkaUtils.createDirectStream 方法创建DStream,后续对数据进行处理,比如常见的wordCount操作。

实际操作时,得先启动Kafka集群,再开启Kafka生产者发送数据。运行Spark-Streaming程序,就能实时接收并处理Kafka生产的数据。处理完成后,还能通过 kafka-consumer-groups.sh 命令查看消费进度,了解数据处理情况。

相关推荐
筑梦之人9 小时前
Spark-3.5.7文档1 - 快速开始
spark
qqxhb1 天前
系统架构设计师备考第68天——大数据处理架构
大数据·hadoop·flink·spark·系统架构·lambda·kappa
xiaoshu_yilian2 天前
pyspark入门实操(收藏版)
spark
梦里不知身是客112 天前
Spark的容错机制
大数据·分布式·spark
乌恩大侠3 天前
【Spark】操作记录
人工智能·spark·usrp
大数据CLUB3 天前
酒店预订数据分析及预测可视化
大数据·hadoop·分布式·数据挖掘·数据分析·spark·mapreduce
新知图书3 天前
RDD的特点、算子与创建方法
数据分析·spark·1024程序员节
青云交4 天前
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用
java·spark·lstm·可视化·java 大数据·空气质量监测·污染溯源
Lansonli4 天前
大数据Spark(七十二):Transformation转换算子repartition和coalesce使用案例
大数据·分布式·spark
lucky_syq4 天前
Scala与Spark算子:大数据处理的黄金搭档
开发语言·spark·scala