从FP32到BF16,再到混合精度的全景解析

笔者做过目标检测模型、超分模型以及扩散生成模型。其中最常使用的是单精度FP32、半精度FP16、BF16

双精度"FP64"就不说了,不太会用到。

#1. 单精度、半精度和混合精度

单精度(FP32)、半精度(FP16)和混合精度(FP32+FP16) 是常见的浮点数计算格式,在深度学习模型的训练与推理中都有涉及。

它们在计算效率、显存占用和数值稳定性上有显著差异。以下是它们的核心区别对比:

精度类型 位数 显存占用&生成效果 生成速度 用途
FP32 32-bit 🌟🌟🌟🌟最高 🌟最慢 预训练
FP16 16-bit 🌟🌟 🌟🌟🌟 微调训练、推理
BF16 16-bit 🌟🌟 🌟🌟🌟 微调训练、推理
混合精度 FP16+FP32 🌟🌟🌟 🌟🌟 微调训练、推理
FP8 (E4M3) 8-bit 🌟最低 🌟🌟🌟🌟最快 边缘设备推理
FP8 (E5M2) 8-bit 🌟最低 🌟🌟🌟🌟最快 边缘设备推理

注:推理即图像生成。


#2. BF16(Brain Float16)是什么?

简单的说,「BF16」的显存占用与「FP16」相近,但稳定性与训练效果更好。所以在训练时建议用「BF16」替代「FP16」。

「BF16」由 Google Brain 提出,保留与 FP32 相同的指数位数 (8 位指数),仅降低小数位数(从FP32的23 位缩减到7位)。虽然BF16点小数部分精度低于 FP16的10位,但这部分对深度学习影响较小,可以暂时忽略。


#3. 混合精度(FP16 + FP32)是什么?

混合精度会同时使用 FP16 和 FP32,关键部分(如梯度更新)保留 FP32。

笔者一般会直接使用自动混合精度(AMP),即让程序自己选择精度,一般来讲模型权重会保存为FP32,前向与反向传播用FP16。


#4. FP8的简单了解

实际中很少使用FP8,因为它们的生成效果几乎是最差的(不管INT8),基本只会用于边缘设备(如RV1126等)。所以只需简单了解:

  • E5M2(5 位指数,2 位小数):动态范围大,适合梯度计算(训练)。
  • E4M3(4 位指数,3 位小数):精度稍高,适合前向传播(生成)。
相关推荐
AiTop1003 分钟前
美团LongCat-Flash-Omni上线:5600亿参数实现音视频交互“零延迟”
人工智能·ai·aigc·音视频·交互
IT_陈寒8 分钟前
Vite 5震撼发布!10个新特性让你的开发效率飙升200% 🚀
前端·人工智能·后端
万俟淋曦8 分钟前
NVIDIA DriveOS 推动新一代智能汽车实现突破
人工智能·ai·汽车·nvidia·智能汽车·driveos·driveworks
rengang6610 分钟前
14-循环神经网络(RNN):分析RNN在序列数据中的表现和特点
人工智能·rnn·深度学习
Toky丶38 分钟前
具身智能(一)关于VLA模型π0
人工智能
岛屿旅人39 分钟前
英国国防部推进本土化开放架构建设
网络·人工智能·安全·web安全·架构
chenchihwen40 分钟前
AI代码开发宝库系列:LangChain 工具链:从LCEL到实际应用
人工智能·python·langchain·rag
TwoAnts&DingJoy1 小时前
数据分析-数据沙箱
人工智能·python·安全·数据分析·数据沙箱
FreeCode1 小时前
Agent开发:LangChain1.0快速入门(一)
人工智能·llm·agent
CV实验室1 小时前
CV论文速递: 覆盖医学影像分析、视频理解与生成、3D场景理解与定位等方向! (10.27-10.31)
人工智能·计算机视觉·3d·音视频