DeepSeek-Prover-V2-671B 简介、下载、体验、微调、数据集:专为数学定理自动证明设计的超大垂直领域语言模型(在线体验地址)

DeepSeek-Prover-V2-671B 最新发布:专为数学定理自动证明设计的超大语言模型

体验地址Hugging Face 在线体验
推荐入口Novita 平台直达链接(含邀请码)


一、模型简介

DeepSeek-Prover-V2-671B 是 DeepSeek 团队于 2025 年4月30日发布的开源超大垂直领域语言模型,专为在 Lean 4 语言中进行数学定理的形式化证明(formal theorem proving)而打造。该模型是 DeepSeek-V3 架构的继承者,采用冷启动推理数据合成与强化学习相结合的训练策略,成功将非形式化数学推理与形式化证明能力融合为一体。


二、技术亮点概览

1. 冷启动推理数据合成

DeepSeek-Prover-V2 通过一个递归推理流程合成"冷启动数据":

  • 使用 DeepSeek-V3 拆解复杂定理为一系列子目标(subgoals);
  • 利用较小的 7B 规模模型生成每个子目标的 Lean 4 形式化证明;
  • 将这些步骤组合为完整证明,并结合 DeepSeek-V3 的思路链(chain-of-thought)形成训练样本。

2. 强化学习提升推理泛化

在冷启动数据的基础上,模型进一步经过强化学习微调:

  • 通过难题的子目标解构,组合完成的定理证明;
  • 使用"对错"二分类反馈(binary correct/incorrect)作为强化信号;
  • 大幅提升模型处理复杂逻辑结构的能力。

三、权威评测成果

数据集 表现
MiniF2F-test 88.9% 通过率
PutnamBench 解出 49/658 道高难度数学题

这些结果表明 DeepSeek-Prover-V2-671B 在神经网络定理证明领域中达到了当前最先进水平。


四、ProverBench:覆盖高中到大学的数学题集

团队同步发布了专用评测数据集 ProverBench,共计 325 道题,题目来源涵盖:

  • AIME 24/25 竞赛题(15题)
  • 初等代数、数论、线性代数、微积分等主流教材题(310题)
数学领域 题量
数论 40
微积分 90
线性代数 50
高中竞赛题 15
抽象代数、实分析等 若干

五、模型与数据开放获取

模型名称 下载地址
DeepSeek-Prover-V2-7B Hugging Face
DeepSeek-Prover-V2-671B Hugging Face
数据集名称 下载地址
ProverBench Hugging Face

六、快速使用示例(基于 Transformers)

模型可直接接入 Hugging Face Transformers 框架进行使用,以下为 Lean 4 数学题自动证明示例(使用 7B 或 671B 均可):

python 复制代码
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(30)

model_id = "DeepSeek-Prover-V2-7B"  # or DeepSeek-Prover-V2-671B
tokenizer = AutoTokenizer.from_pretrained(model_id)

formal_statement = """
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- What is the positive difference between $120\%$ of 30 and $130\%$ of 20? Show that it is 10.-/
theorem mathd_algebra_10 : abs ((120 : ℝ) / 100 * 30 - 130 / 100 * 20) = 10 := by
  sorry
""".strip()

prompt = """
Complete the following Lean 4 code:

```lean4
{}
/```

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan outlining the main proof steps and strategies.
The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the construction of the final formal proof.
""".strip()

chat = [
  {"role": "user", "content": prompt.format(formal_statement)},
]

model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
inputs = tokenizer.apply_chat_template(chat, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)

import time
start = time.time()
outputs = model.generate(inputs, max_new_tokens=8192)
print(tokenizer.batch_decode(outputs))
print(time.time() - start)

七、总结

DeepSeek-Prover-V2-671B 是首个同时在 数学语言理解、链式推理与形式化构造 三方面取得全面突破的开源大模型。其精度、上下文理解能力和复杂任务适配性,已然跻身世界顶级 AI 推理系统之列。

推荐用途:大学级数学自动化解题系统、AI 辅助证明系统、Lean 4 数学研究平台、数学教育工具开发等。


相关推荐
SunsPlanter38 分钟前
机器学习--分类
人工智能·机器学习·分类
MiaoChuPPT1 小时前
告别手动做PPT!4款AI工具实现自动化生成
人工智能·自动化·powerpoint
硅谷秋水1 小时前
Genie Centurion:通过人工-回放-和-细化指导加速规模化真实世界机器人训练
人工智能·深度学习·计算机视觉·机器人
Allen Bright1 小时前
【机器学习-线性回归-7】中心极限定理在机器学习线性回归中的重要性
人工智能·机器学习·线性回归
Blossom.1181 小时前
基于区块链的去中心化身份验证系统:原理、实现与应用
运维·服务器·网络·人工智能·机器学习·去中心化·区块链
云卓SKYDROID2 小时前
无人机智能运行系统技术解析
人工智能·无人机·科普·高科技·云卓科技
计算机小手2 小时前
FastGPT实战:从0搭建AI知识库与MCP AI Agent系统
人工智能·经验分享·aigc·开源软件
一点.点2 小时前
CoLMDriver:基于LLM的协同自动驾驶
人工智能·自动驾驶
AI大模型技术社2 小时前
循环神经网络全景图:从基础RNN到注意力增强的演进之路
人工智能·神经网络
海底火旺2 小时前
技术魔法:用扣子工作流实现三巨头跨次元对话视频生成
人工智能·开源·coze