#Paper Reading# DeepSeek-R1

论文题目: DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

论文地址: https://arxiv.org/pdf/2501.12948

论文发表于: arXiv 2025年1月

论文所属单位: DeepSeek

论文大体内容

本文提出DeepSeek-R1模型,主要是以DeepSeek-V3[4]基座模型的基础上进行优化,提升其推理能力。本文首先提出了DeepSeek-R1-Zero模型,探索仅用RL去提升推理能力,并进而提出DeepSeek-R1,拿到很好的效果。

Motivation

之前的工作都需要较多的监督数据进行SFT,本文尝试把SFT去掉,仅使用RL,探索模型的效果。

Contribution

①本文探索了纯RL的后训练,无需SFT,为后续这领域的发展铺平了道路。

②对大模型进行蒸馏,会比小模型进行RL拿到更好的效果。

  1. DeepSeek-R1-Zero:对基座模型仅进行RL,来提升它的效果。

①RL算法采用了GRPO(Group Relative Policy Optimization)[1],这个算法在DeepSeek-Math[2]中首次提出。

②采用rule based的reward model,包括准确性奖励(评估是否回答正确)和格式奖励(思考过程位于<think>和</think>标签之间)。

  1. DeepSeek-R1-Zero的效果:效果对标OpenAI-o1。从训练的演进可以看到效果在不断提升。
  1. 观察DeepSeek-R1-Zero的「自我进化」过程,可以看到随着不断训练,它的输出长度会不断增加。这个代码模型的泛化、推理能力在不断增强。
  1. DeepSeek-R1-Zero的Aha Moment,出现了拟人化语气的自我反思。
  1. DeepSeek-R1-Zero的优缺点:

①优点:推理能力强,且通过RL自己探索出来了。

②缺点:可读性差、语言混合。

  1. 为了解决DeepSeek-R1-Zero的缺点问题,本文提出了DeepSeek-R1。

①Cold Start:收集CoT的几千个实例用于RL的冷启,实例的可读性通过人工review去保障。

②RL引入语言一致性奖励,计算方式是统计目标语言在CoT中的占比,这样能降低语言混合,提升可读性,但同时也对性能有一些损失。

③使用RST(Rejection Sampling and Supervised Fine-Tunin)进行微调,包括推理数据(600k)和非推理数据(200k)

④评测效果如下图。

  1. 蒸馏:本文对其它的开源模型,包括Qwen和LLaMa等,使用R1产出的SFT数据进行了SFT,发现小模型也能学习到推理能力,效果原地拔高。
  1. R1整体的训练pipeline[5]思路如下图。

参考资料

1\] 无需RL基础理解 PPO 和 GRPO:[https://mp.weixin.qq.com/s/YHoDl99fyNe7MP03BoRc6g](https://mp.weixin.qq.com/s/YHoDl99fyNe7MP03BoRc6g "https://mp.weixin.qq.com/s/YHoDl99fyNe7MP03BoRc6g") \[2\] DeepSeek-Math:[https://blog.csdn.net/John159151/article/details/147675280](https://blog.csdn.net/John159151/article/details/147675280 "https://blog.csdn.net/John159151/article/details/147675280") \[3\] 逐篇讲解DeepSeek关键9篇论文及创新点------"勇敢者的游戏":[https://www.bilibili.com/video/BV1xuK5eREJi/](https://www.bilibili.com/video/BV1xuK5eREJi/ "https://www.bilibili.com/video/BV1xuK5eREJi/") \[4\] DeepSeek-V3:[https://blog.csdn.net/John159151/article/details/147402251](https://blog.csdn.net/John159151/article/details/147402251 "https://blog.csdn.net/John159151/article/details/147402251") \[5\] 最好的致敬是学习:DeepSeek-R1 赏析:[https://www.youtube.com/watch?v=2qyUi4TD6xA](https://www.youtube.com/watch?v=2qyUi4TD6xA "https://www.youtube.com/watch?v=2qyUi4TD6xA") 以上均为个人见解,因本人水平有限,如发现有所错漏,敬请指出,谢谢!

相关推荐
aihuangwu21 分钟前
如何把豆包的回答导出
人工智能·ai·deepseek·ds随心转
dawdo22235 分钟前
自己动手从头开始编写LLM推理引擎(9)-KV缓存实现和优化
缓存·llm·transformer·qwen·kv cache
卖芒果的潇洒农民2 小时前
20260201 GPT VPC中的CIDR Block 概念
笔记·gpt
aihuangwu3 小时前
ChatGPT和Gemini图表怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
薛定谔的猫19823 小时前
二十、使用PyTorch和Hugging Face Transformers训练中文GPT-2模型的技术实践
人工智能·pytorch·gpt
x-cmd13 小时前
[x-cmd] x claude ds - 无需 Claude 账号!零门槛让 Claude Code 接入 DeepSeek AI 模型
ai·claude·deepseek·claude-code·写代码
小杨互联网15 小时前
LLM应用三大隐形风险与防护方案详解
llm
名为沙丁鱼的猫72918 小时前
【MCP 协议层(Protocol layer)详解】:深入分析MCP Python SDK中协议层的实现机制
人工智能·深度学习·神经网络·机器学习·自然语言处理·nlp
小汤圆不甜不要钱19 小时前
「Datawhale」RAG技术全栈指南 Task 5
python·llm·rag
桂花很香,旭很美20 小时前
基于 MCP 的 LLM Agent 实战:架构设计与工具编排
人工智能·nlp