LLM论文笔记 27: Looped Transformers for Length Generalization

  • Arxiv日期:2024.9.25

关键词

  • 长度泛化

  • transformer结构优化

核心结论

  1. RASP-L限制transformer无法处理包含循环的任务的长度泛化

  2. Loop Transformer显著提升了长度泛化能力

  • Input Injection显著提升了模型的长度泛化性能,尤其在二进制加法等复杂任务上效果显著

  • 在推理中,通过输出置信度判断迭代停止点的策略能够实现接近最佳的性能

主要方法

Transformer在长度泛化(length generalization)上表现有限,尤其是对未见长度的输入。本文重点研究解决这一问题的Loop Transformer架构(Looped Transformers),通过循环处理增加模型对输入长度的适应能力。

n-RASP-L问题 :(=n循环RASP-L问 )定义了一类任务,这些任务可以通过多次迭代应用某些基础操作(RASP-L操作)来解决。这些任务包括复制、求和、二进制加法等。

本质上是将内部无法处理的循环替换到外部,做到"n次transformer"

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
HaiQinyanAN20 分钟前
【学习笔记】锁+死锁+gdb调试死锁
c++·笔记·学习
qq_3977529321 分钟前
革新仓储新纪元:海格里斯HEGERLS四向穿梭车智领未来
大数据·人工智能
思绪漂移25 分钟前
让Agent的应用价值增长
人工智能·aigc
孞㐑¥27 分钟前
Linux之线程同步与互斥
linux·c++·经验分享·笔记
羊小猪~~29 分钟前
【NLP入门系列三】NLP文本嵌入(以Embedding和EmbeddingBag为例)
人工智能·深度学习·神经网络·自然语言处理·大模型·nlp·embedding
事变天下34 分钟前
店匠科技闪耀“跨博会”,技术+生态打造灵活出海能力
大数据·人工智能·科技
xx24061 小时前
React Native学习笔记
笔记·学习·react native
未来智慧谷1 小时前
全球首款5G-A人形机器人亮相,通信与AI融合进入新阶段
人工智能·5g·机器人
love530love1 小时前
【笔记】解决部署国产AI Agent 开源项目 MiniMax-M1时 Hugging Face 模型下载缓存占满 C 盘问题:更改缓存位置全流程
开发语言·人工智能·windows·笔记·python·缓存·uv
贝多财经1 小时前
魅族“换血”出牌:手机基本盘站不稳,想靠AI和汽车“改命”
人工智能·智能手机·汽车