LLM论文笔记 27: Looped Transformers for Length Generalization

  • Arxiv日期:2024.9.25

关键词

  • 长度泛化

  • transformer结构优化

核心结论

  1. RASP-L限制transformer无法处理包含循环的任务的长度泛化

  2. Loop Transformer显著提升了长度泛化能力

  • Input Injection显著提升了模型的长度泛化性能,尤其在二进制加法等复杂任务上效果显著

  • 在推理中,通过输出置信度判断迭代停止点的策略能够实现接近最佳的性能

主要方法

Transformer在长度泛化(length generalization)上表现有限,尤其是对未见长度的输入。本文重点研究解决这一问题的Loop Transformer架构(Looped Transformers),通过循环处理增加模型对输入长度的适应能力。

n-RASP-L问题 :(=n循环RASP-L问 )定义了一类任务,这些任务可以通过多次迭代应用某些基础操作(RASP-L操作)来解决。这些任务包括复制、求和、二进制加法等。

本质上是将内部无法处理的循环替换到外部,做到"n次transformer"

注:本系列不包括基础的知识点讲解,为笔记/大纲性质而非教程,用于论文知识点和思想和快速记忆和回顾,更多细节建议阅读论文原文

相关推荐
图欧学习资源库2 分钟前
人工智能领域、图欧科技、IMYAI智能助手2025年6月更新月报
人工智能·科技
老虎06275 分钟前
JavaWeb(苍穹外卖)--学习笔记17(Websocket)
笔记·websocket·学习
聚客AI28 分钟前
✅掌握ReAct=掌控AI代理灵魂:从工具调用、循环架构到生产级优化
人工智能·llm·掘金·日新计划
bright_colo31 分钟前
Python-初学openCV——图像预处理(七)——亮度变换、形态学变换
人工智能·opencv·计算机视觉
CODE_RabbitV40 分钟前
如何让 RAG 检索更高效?——大模型召回策略全解
人工智能·算法·机器学习
一点一木1 小时前
PromptPilot 与豆包新模型:从图片到视频,解锁 AI 新玩法
前端·人工智能
aneasystone本尊1 小时前
实战 Coze Studio 智能体开发
人工智能
无规则ai1 小时前
数字图像处理(冈萨雷斯)第三版:第四章——频率域滤波(学前了解知识)——主要内容和重点
人工智能·算法·机器学习·计算机视觉
三道杠卷胡2 小时前
【AI News | 20250804】每日AI进展
人工智能·python·语言模型·github·aigc
蓝屏的钙2 小时前
从 FastGPT 中浅析 RAG 技术
人工智能·llm