使用FastAPI和Apache Flink构建跨环境数据管道

系统概述

本文介绍如何使用FastAPI微服务、Apache Flink和AWS ElastiCache Redis构建一个可扩展的数据管道,实现本地Apache Hive数据仓库与AWS云上Redis之间的数据交互。

该架构通过FastAPI提供RESTful接口,Apache Flink处理数据流,实现了本地Hive与云上Redis的高效数据交互。部署时需特别注意网络配置和安全设置,确保各组件间通信顺畅。

架构设计

系统架构分为三个主要组件:

复制代码
+-------------------+       +-------------------+       +-------------------+
| 本地环境          |       | Apache Flink      |       | AWS环境           |
| Apache Hive数据仓库 | <---> | 流处理引擎        | <---> | ElastiCache Redis |
+-------------------+       +-------------------+       +-------------------+

详细设计

1. FastAPI微服务

作为API层,提供与Redis交互的端点:

关键组件:

  • 使用aioredis实现异步Redis操作
  • 提供三种核心端点:GET/POST/DELETE

示例代码:

python 复制代码
from fastapi import FastAPI, HTTPException 
import aioredis
import json

app = FastAPI()
REDIS_URL = "redis://your-elasticache-endpoint:6379"
redis = aioredis.from_url(REDIS_URL, encoding="utf-8", decode_responses=True)

@app.get("/data/{key}")
async def get_data(key: str):
    value = await redis.get(key)
    if value is None:
        raise HTTPException(status_code=404, detail="Item not found")
    return json.loads(value)

@app.post("/data/{key}")
async def set_data(key: str, value: dict):
    await redis.set(key, json.dumps(value))
    return {"message": "Data stored successfully"}

@app.delete("/data/{key}")
async def delete_data(key: str):
    await redis.delete(key)
    return {"message": "Data deleted successfully"}

部署方式:

  • 使用Uvicorn在EC2实例上运行
  • 或通过AWS Elastic Beanstalk部署
  • 配置安全组开放8000端口
  • 使用AWS Secrets Manager管理Redis凭证

2. Apache Flink流处理器

功能:

  • 从本地Hive数据仓库读取数据
  • 处理后写入AWS ElastiCache Redis

关键组件:

  • Hive Catalog配置
  • Redis Sink连接器

示例代码:

python 复制代码
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
HiveCatalog hive = new HiveCatalog("my_catalog", "default", hiveConf);
env.addSource(new FlinkHiveSource(...))
   .addSink(new RedisSink<>(new RedisSinkFunction(...)));
env.execute("Flink Streaming Job");

部署方式:

  • 使用Amazon Kinesis Data Analytics
  • 或在EC2上自管理
  • 配置网络访问权限
  • 建议使用AWS Direct Connect确保安全连接

部署步骤

FastAPI部署

  1. 设置EC2实例或Elastic Beanstalk环境
  2. 安装依赖:pip install fastapi aioredis uvicorn
  3. 运行应用:uvicorn main:app --host 0.0.0.0 --port 8000

Flink部署

  1. 在AWS上设置Flink环境
  2. 配置Hive Catalog和Redis Sink
  3. 提交并监控Flink作业

Redis配置

  1. 在AWS创建ElastiCache Redis集群
  2. 配置安全组和VPC设置

测试用例

FastAPI端点测试

  1. 测试GET /data/{key}(存在/不存在的键)
  2. 测试POST /data/{key}(有效/无效数据)
  3. 测试DELETE /data/{key}(存在/不存在的键)

Flink流处理测试

验证数据能正确从Hive读取

关键Python代码

python 复制代码
# FastAPI主程序
from fastapi import FastAPI, HTTPException 
import aioredis
import json

app = FastAPI()
REDIS_URL = "redis://your-elasticache-endpoint:6379"
redis = aioredis.from_url(REDIS_URL, encoding="utf-8", decode_responses=True)

@app.get("/data/{key}")
async def get_data(key: str):
    value = await redis.get(key)
    if value is None:
        raise HTTPException(status_code=404, detail="Item not found")
    return json.loads(value)

@app.post("/data/{key}")
async def set_data(key: str, value: dict):
    await redis.set(key, json.dumps(value))
    return {"message": "Data stored successfully"}

@app.delete("/data/{key}")
async def delete_data(key: str):
    await redis.delete(key)
    return {"message": "Data deleted successfully"}
相关推荐
aristo_boyunv23 分钟前
Redis底层原理-持久化【详细易懂】
数据库·redis·缓存
AntBlack33 分钟前
不当韭菜 : 好像真有点效果 ,想藏起来自己用了
前端·后端·python
百锦再1 小时前
破茧成蝶:全方位解析Java学习难点与征服之路
java·python·学习·struts·kafka·maven·intellij-idea
羊锦磊1 小时前
[ Redis ] SpringBoot集成使用Redis(补充)
java·数据库·spring boot·redis·spring·缓存·json
可触的未来,发芽的智生1 小时前
触摸未来2025-10-25:蓝图绘制
javascript·python·神经网络·程序人生·自然语言处理
新手村领路人2 小时前
python opencv gpu加速 cmake msvc cuda编译问题和设置
开发语言·python·opencv
白帽子黑客罗哥2 小时前
Redis实战深度剖析:高并发场景下的架构设计与性能优化
redis·网络安全·性能优化·高并发·分布式锁·秒杀系统·缓存架构
TG_yunshuguoji2 小时前
亚马逊云渠道商:本地SSD缓存如何保障数据安全?
运维·服务器·安全·云计算·aws
暴风鱼划水3 小时前
卡码网语言基础课(Python) | 19.洗盘子
python·算法
Gitpchy3 小时前
Day 23 机器学习管道 pipeline
python·机器学习