Spark任务调度流程详解

1. 核心调度组件
  • DAGScheduler:负责将Job拆分为Stage,处理Stage间的依赖关系。

  • TaskScheduler:将Task分配到Executor,监控任务执行。

  • SchedulerBackend:与集群管理器(如YARN、K8s)通信,管理Executor资源。


2. 调度流程分步拆解
步骤1:用户提交代码
Scala 复制代码
val rdd = sc.textFile("hdfs://data.txt")
  .flatMap(_.split(" "))
  .map((_, 1))
  .reduceByKey(_ + _)
rdd.collect()  // 触发Job提交
步骤2:生成DAG(有向无环图)
  • RDD血缘(Lineage) :记录RDD的转换过程(textFileflatMapmapreduceByKey)。

  • 宽依赖(Shuffle)reduceByKey导致Stage划分。

步骤3:划分Stage
  • Stage 0textFileflatMapmap(窄依赖,合并为一个Stage)。

  • Stage 1reduceByKey(宽依赖,单独一个Stage)。

步骤4:提交Task
  • Stage 0 生成多个MapTaskStage 1 生成多个ReduceTask

  • TaskScheduler根据数据本地性(Data Locality)分配Task到Executor。

步骤5:执行与监控
  • Executor执行Task,向Driver汇报状态。

  • 失败Task自动重试(默认重试3次)。


3. 关键概念详解
概念 说明 示例
Job 由行动操作(如collect)触发的完整计算任务 一次collect()生成一个Job
Stage 由一组无Shuffle依赖的Task组成(分为ResultStageShuffleMapStage reduceByKey前为一个Stage
Task Stage中每个分区的计算单元(ShuffleMapTaskResultTask 处理一个分区的数据
Shuffle 跨Stage数据重分布(如groupByKeyjoin reduceByKey触发Shuffle
数据本地性 优先将Task调度到数据所在节点(PROCESS_LOCAL > NODE_LOCAL > ANY 读取HDFS块时优先分配到数据所在节点

4. 调度流程示意图

5. 性能优化点
  1. 减少Shuffle

    • reduceByKey替代groupByKey(提前局部聚合)。

    • 使用Broadcast Join代替Shuffle Join

  2. 调整并行度

    • 通过spark.default.parallelismrepartition()控制分区数。
  3. 数据本地性

    • 确保输入数据与Executor在同一节点(如HDFS副本策略)。
  4. 资源分配

    • 合理设置Executor内存(spark.executor.memory)和CPU核心数(spark.executor.cores)。

6. 容错机制
  • Stage重试:若某个Stage失败,重新提交该Stage的所有Task。

  • Task重试:单个Task失败后,TaskScheduler会重新调度(默认最多3次)。

  • 血缘恢复:若Executor丢失数据,根据RDD血缘重新计算。


总结

Spark的调度机制通过DAG优化、本地性优先和容错设计,实现了高效的大数据处理。理解其原理后,可通过调整分区策略、优化Shuffle操作等手段显著提升性能。

相关推荐
新诺韦尔API2 小时前
手机三要素验证不通过的原因?
大数据·智能手机·api
成长之路5142 小时前
【数据集】分地市全社会用电量统计数据(2004-2022年)
大数据
InfiSight智睿视界2 小时前
门店智能体技术如何破解美容美发连锁的“标准执行困境”
大数据·运维·人工智能
前端不太难2 小时前
从本地到多端:HarmonyOS 分布式数据管理实战详解
分布式·状态模式·harmonyos
Yeats_Liao2 小时前
MindSpore开发之路(二十五):融入开源:如何为MindSpore社区贡献力量
人工智能·分布式·深度学习·机器学习·华为·开源
Python_Study20253 小时前
制造业数据采集系统选型指南:从技术挑战到架构实践
大数据·网络·数据结构·人工智能·架构
Cx330❀3 小时前
Git 多人协作全攻略:从入门到高效协同
大数据·elasticsearch·搜索引擎·gitee·github·全文检索·gitcode
Tob管理笔记4 小时前
建筑业如何精准开拓优质客户?技术驱动下的方法论与实践
大数据·云计算·数据库开发
MM_MS4 小时前
Halcon控制语句
java·大数据·前端·数据库·人工智能·算法·视觉检测
我爱娃哈哈4 小时前
SpringBoot + Seata + Nacos:分布式事务落地实战,订单-库存一致性全解析
spring boot·分布式·后端