Spark缓存

Spark 缓存(Caching)是一种重要的性能优化技术,它允许将频繁使用的数据集持久化到内存或磁盘中,避免重复计算。

缓存的基本概念

为什么要使用缓存?

1.避免重复计算:对于需要多次使用的 RDD/DataFrame/Dataset,缓存后只需计算一次

2.加速迭代算法:机器学习等迭代算法中,重复使用同一数据集时可显著提升性能

3.优化执行计划:减少从数据源重复读取数据的开销

缓存方法

主要缓存API

Scala 复制代码
val rdd = sc.parallelize(1 to 100)

// 缓存方法
rdd.cache()  // 等同于 persist(MEMORY_ONLY)
rdd.persist()  // 使用默认存储级别
rdd.persist(StorageLevel.MEMORY_AND_DISK)  // 指定存储级别

// 取消缓存
rdd.unpersist()

存储级别(StorageLevel)

|-------------------------|------------------------|
| 存储级别 | 描述 |
| `MEMORY_ONLY` | 只存储在内存中(默认) |
| `MEMORY_AND_DISK` | 内存存不下时溢出到磁盘 |
| `MEMORY_ONLY_SER` | 序列化后存储内存(节省空间但增加CPU开销) |
| `MEMORY_AND_DISK_SER` | 序列化存储,内存不足时存磁盘 |
| `DISK_ONLY` | 只存储在磁盘 |
| `OFF_HEAP` | 使用堆外内存 |

缓存的最佳实践

  1. 选择性缓存:

只缓存会被多次使用的数据集

避免缓存一次性使用的数据

  1. 合理选择存储级别:

内存充足时使用 `MEMORY_ONLY`

大数据集且内存有限时使用 `MEMORY_AND_DISK`

对象较大时考虑序列化存储(`_SER`)

  1. 及时释放:

使用 `unpersist()` 释放不再需要的缓存

避免不必要的内存占用

  1. 监控缓存使用:

通过 Spark UI 查看缓存大小和命中率

调整缓存策略基于实际使用情况

缓存示例

Scala 复制代码
// 读取大数据集
val logs = spark.read.csv("huge-log-file.csv")

// 过滤并缓存常用数据
val errorLogs = logs.filter($"level" === "ERROR").cache()

// 多次使用缓存数据
val errorCount = errorLogs.count()
val recentErrors = errorLogs.filter($"date" > "2023-01-01")

// 使用完成后释放
errorLogs.unpersist()

注意事项

  1. 缓存不保证数据一定在内存中(可能因内存压力被LRU淘汰)

  2. 缓存是惰性的,第一次action操作时才会真正缓存

  3. 序列化缓存可节省空间但增加CPU开销

  4. 在Spark UI的Storage标签页可以查看缓存状态

合理使用缓存可以显著提高Spark应用性能,但需要根据数据大小、访问模式和集群资源进行适当配置。

相关推荐
天硕国产存储技术站2 小时前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘
雷文成.思泉软件2 小时前
以ERP为核心、企微为门户,实现一体化集成
大数据·低代码·创业创新
q***87602 小时前
yum安装redis
数据库·redis·缓存
东哥说-MES|从入门到精通3 小时前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
南飞测绘视界4 小时前
上市公司绿色专利申请、授权数据(1999-2024年)
大数据·专利·上市公司
一个天蝎座 白勺 程序猿5 小时前
KingbaseES在政务领域的应用实践——武汉人社大数据平台“数字化服务新模式”
大数据·数据库·政务·kingbasees·金仓数据库
pale_moonlight5 小时前
十、 Scala 应用实践 (上)
大数据·开发语言·scala
第二只羽毛6 小时前
遵守robots协议的友好爬虫
大数据·爬虫·python·算法·网络爬虫
Elastic 中国社区官方博客6 小时前
使用 A2A 协议和 MCP 在 Elasticsearch 中创建一个 LLM agent 新闻室:第二部分
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
安达发公司7 小时前
安达发|告别手工排产!车间排产软件成为中央厨房的“最强大脑”
大数据·人工智能·aps高级排程·aps排程软件·安达发aps·车间排产软件