数据清洗ETL

ETL介绍

"ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

在Transform的过程中,我们经常会做数据清洗这个操作。它是指对采集到的原始数据进行预处理,以去除错误、重复、不完整或不一致的数据,使数据符合分析要求的过程。它在整个数据分析和数据处理流程中处于非常重要的位置,因为数据质量的好坏直接影响到后续分析结果的准确性和可靠性。

清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

实现代码

在之前的项目的基础之上,重写去写一个包,并创建两个类:WebLogMapper和WebLogDriver类。

(1)编写WebLogMapper类

package com.root.mapreduce.weblog;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

// 1. 获取一行数据,使用空格进行拆分,判断是否有8个字段

String[] fields = value.toString().split(" ");

if (fields.length > 7) {

// 这条数据是有意义的,保留

System.out.println(fields[0]);

context.write(value, NullWritable.get());

}

}

}

代码说明:NullWritable就等价于null,context.write(value,NullWritable.get())就表示只有key,没有value。

(2)编写WebLogDriver类

package com.root.mapreduce.weblog;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {

public static void main(String[] args) throws Exception {

// 1 获取job信息

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

// 2 加载jar包

job.setJarByClass(LogDriver.class);

// 3 关联map

job.setMapperClass(WebLogMapper.class);

// 4 设置最终输出类型

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class);

// 设置reducetask个数为0

job.setNumReduceTasks(0);

// 5 设置输入和输出路径

FileInputFormat.setInputPaths(job, new Path("E:\\vm\\web.log"));

FileOutputFormat.setOutputPath(job, new Path("E:\\vm\\ouput2"));

// 6 提交

boolean b = job.waitForCompletion(true);

System.exit(b ? 0 : 1);

}

}

代码说明:reduceTask为0,表示没有reduce阶段,程序会根据Map函数的结果把内容输出。最终输出的文件个数与mapperTask的数量一致。

相关推荐
£菜鸟也有梦4 小时前
从0到1,带你走进Flink的世界
大数据·hadoop·flink·spark
小伍_Five18 小时前
Spark实战能力测评模拟题精析【模拟考】
java·大数据·spark·scala·intellij-idea
不吃饭的猪18 小时前
记一次运行spark报错
大数据·分布式·spark
qq_4639448618 小时前
【Spark征服之路-2.1-安装部署Spark(一)】
大数据·分布式·spark
后端码匠1 天前
Kafka 单机部署启动教程(适用于 Spark + Hadoop 环境)
hadoop·spark·kafka
技术吧3 天前
Spark-TTS: AI语音合成的“变声大师“
大数据·人工智能·spark
MyikJ6 天前
Java互联网大厂面试:从Spring Boot到Kafka的技术深度探索
java·spring boot·微服务·面试·spark·kafka·spring security
向哆哆6 天前
Java 大数据处理:使用 Hadoop 和 Spark 进行大规模数据处理
java·hadoop·spark
阿里云大数据AI技术6 天前
Fusion引擎赋能:流利说如何用阿里云Serverless Spark实现数仓计算加速
大数据·人工智能·阿里云·spark·serverless·云计算
Matrix706 天前
大数据量下的数据修复与回写Spark on Hive 的大数据量主键冲突排查:COUNT(DISTINCT) 的陷阱
大数据·hive·spark