数据清洗ETL

ETL介绍

"ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

在Transform的过程中,我们经常会做数据清洗这个操作。它是指对采集到的原始数据进行预处理,以去除错误、重复、不完整或不一致的数据,使数据符合分析要求的过程。它在整个数据分析和数据处理流程中处于非常重要的位置,因为数据质量的好坏直接影响到后续分析结果的准确性和可靠性。

清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

实现代码

在之前的项目的基础之上,重写去写一个包,并创建两个类:WebLogMapper和WebLogDriver类。

(1)编写WebLogMapper类

package com.root.mapreduce.weblog;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

// 1. 获取一行数据,使用空格进行拆分,判断是否有8个字段

String[] fields = value.toString().split(" ");

if (fields.length > 7) {

// 这条数据是有意义的,保留

System.out.println(fields[0]);

context.write(value, NullWritable.get());

}

}

}

代码说明:NullWritable就等价于null,context.write(value,NullWritable.get())就表示只有key,没有value。

(2)编写WebLogDriver类

package com.root.mapreduce.weblog;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {

public static void main(String[] args) throws Exception {

// 1 获取job信息

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

// 2 加载jar包

job.setJarByClass(LogDriver.class);

// 3 关联map

job.setMapperClass(WebLogMapper.class);

// 4 设置最终输出类型

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class);

// 设置reducetask个数为0

job.setNumReduceTasks(0);

// 5 设置输入和输出路径

FileInputFormat.setInputPaths(job, new Path("E:\\vm\\web.log"));

FileOutputFormat.setOutputPath(job, new Path("E:\\vm\\ouput2"));

// 6 提交

boolean b = job.waitForCompletion(true);

System.exit(b ? 0 : 1);

}

}

代码说明:reduceTask为0,表示没有reduce阶段,程序会根据Map函数的结果把内容输出。最终输出的文件个数与mapperTask的数量一致。

相关推荐
筑梦之人1 天前
Spark-3.5.7文档3 - Spark SQL、DataFrame 和 Dataset 指南
spark
筑梦之人1 天前
Spark-3.5.7文档4 - Structured Streaming 编程指南
spark
Q26433650231 天前
【有源码】基于Hadoop+Spark的起点小说网大数据可视化分析系统-基于Python大数据生态的网络文学数据挖掘与可视化系统
大数据·hadoop·python·信息可视化·数据分析·spark·毕业设计
筑梦之人1 天前
Spark-3.5.7文档2 - RDD 编程指南
大数据·分布式·spark
潘达斯奈基~1 天前
spark性能优化2:Window操作和groupBy操作的区别
大数据·性能优化·spark
yumgpkpm1 天前
CMP(类Cloudera CDP 7.3 404版华为泰山Kunpeng)和Apache Doris的对比
大数据·hive·hadoop·spark·apache·hbase·cloudera
乌恩大侠2 天前
DGX Spark 恢复系统
大数据·分布式·spark
梦里不知身是客113 天前
spark读取table中的数据【hive】
大数据·hive·spark
赞奇科技Xsuperzone3 天前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia
更深兼春远3 天前
Spark on Yarn安装部署
大数据·分布式·spark