数据清洗ETL

ETL介绍

"ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(Extract)、转换(Transform)、加载(Load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

在Transform的过程中,我们经常会做数据清洗这个操作。它是指对采集到的原始数据进行预处理,以去除错误、重复、不完整或不一致的数据,使数据符合分析要求的过程。它在整个数据分析和数据处理流程中处于非常重要的位置,因为数据质量的好坏直接影响到后续分析结果的准确性和可靠性。

清理的过程往往只需要运行Mapper程序,不需要运行Reduce程序。

实现代码

在之前的项目的基础之上,重写去写一个包,并创建两个类:WebLogMapper和WebLogDriver类。

(1)编写WebLogMapper类

package com.root.mapreduce.weblog;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public class WebLogMapper extends Mapper<LongWritable, Text, Text, NullWritable>{

@Override

protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

// 1. 获取一行数据,使用空格进行拆分,判断是否有8个字段

String[] fields = value.toString().split(" ");

if (fields.length > 7) {

// 这条数据是有意义的,保留

System.out.println(fields[0]);

context.write(value, NullWritable.get());

}

}

}

代码说明:NullWritable就等价于null,context.write(value,NullWritable.get())就表示只有key,没有value。

(2)编写WebLogDriver类

package com.root.mapreduce.weblog;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WebLogDriver {

public static void main(String[] args) throws Exception {

// 1 获取job信息

Configuration conf = new Configuration();

Job job = Job.getInstance(conf);

// 2 加载jar包

job.setJarByClass(LogDriver.class);

// 3 关联map

job.setMapperClass(WebLogMapper.class);

// 4 设置最终输出类型

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(NullWritable.class);

// 设置reducetask个数为0

job.setNumReduceTasks(0);

// 5 设置输入和输出路径

FileInputFormat.setInputPaths(job, new Path("E:\\vm\\web.log"));

FileOutputFormat.setOutputPath(job, new Path("E:\\vm\\ouput2"));

// 6 提交

boolean b = job.waitForCompletion(true);

System.exit(b ? 0 : 1);

}

}

代码说明:reduceTask为0,表示没有reduce阶段,程序会根据Map函数的结果把内容输出。最终输出的文件个数与mapperTask的数量一致。

相关推荐
百度Geek说1 天前
搜索数据建设系列之数据架构重构
数据仓库·重构·架构·spark·dubbo
大数据CLUB1 天前
基于spark的航班价格分析预测及可视化
大数据·hadoop·分布式·数据分析·spark·数据可视化
Cachel wood11 天前
Spark教程6:Spark 底层执行原理详解
大数据·数据库·分布式·计算机网络·spark
大数据CLUB11 天前
基于pyspark的北京历史天气数据分析及可视化_离线
大数据·hadoop·数据挖掘·数据分析·spark
Cachel wood11 天前
Spark教程1:Spark基础介绍
大数据·数据库·数据仓库·分布式·计算机网络·spark
张昕玥2023032211911 天前
Spark应用开发--WordCount实战
大数据·spark
阳光下是个孩子11 天前
基于 Spark 实现 COS 海量数据处理
大数据·分布式·spark
GawynKing11 天前
Apache SeaTunnel Spark引擎执行流程源码分析
spark·源码·seatunnel
heart000_112 天前
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
大数据·分布式·spark
254054652012 天前
710SJBH基于Apriori算法的学籍课程成绩关联规则挖掘研究
大数据·算法·spark