Autodl训练Faster-RCNN网络(自己的数据集)

参考文章:

Autodl服务器中Faster-rcnn(jwyang)复现(一)_autodl faster rcnn-CSDN博客

Autodl服务器中Faster-rcnn(jwyang)训练自己数据集(二)_faster rcnn autodl-CSDN博客

环境配置

我到下载torch这一步老是即将结束的时候自动结束进程,所以还是自己下载安装吧。

如果出现上面的错误说明你没有加显卡,加上显卡就能运行成功了。

如果在安装相关库过程中发生报错,请先升级pip:

pip install --upgrade pip

数据集准备

我的数据集是之前训练yolo的,是我自己混合的Pascalvoc数据集。

查阅了资料说只需要将xml划分就行,我这里主要是8:2划分为训练集和验证集。

import os

import random

from typing import List, Tuple

def split_dataset(xml_dir: str, output_dir: str, train_percent: float = 0.8) -> None:

"""

将VOC格式数据集的XML标注文件划分为训练集和验证集

参数:

xml_dir: XML标注文件所在目录

output_dir: 输出txt文件的目录

train_percent: 训练集占总样本的比例

"""

确保输出目录存在

os.makedirs(output_dir, exist_ok=True)

获取所有XML文件

try:

total_xml = os.listdir(xml_dir)

except FileNotFoundError:

print(f"错误: XML目录 '{xml_dir}' 不存在")

return

if not total_xml:

print(f"错误: XML目录 '{xml_dir}' 为空")

return

计算划分点

num = len(total_xml)

print(f"找到 {num} 个XML标注文件")

indices = list(range(num))

random.shuffle(indices) # 随机打乱索引

train_size = int(num * train_percent) # 训练集数量

train_indices = indices[:train_size] # 训练集索引

val_indices = indices[train_size:] # 验证集索引

输出划分结果

print(f"数据集划分结果: 训练集 {len(train_indices)}, 验证集 {len(val_indices)}")

创建输出文件并写入数据

file_paths = {

'train': os.path.join(output_dir, 'train.txt'),

'val': os.path.join(output_dir, 'val.txt'),

}

写入训练集

with open(file_paths['train'], 'w') as f_train:

for i in train_indices:

name = total_xml[i][:-4] + '\n'

f_train.write(name)

写入验证集

with open(file_paths['val'], 'w') as f_val:

for i in val_indices:

name = total_xml[i][:-4] + '\n'

f_val.write(name)

print(f"划分完成!训练集和验证集已保存到 {output_dir}")

if name == "main":

配置参数

xml_dir = '/root/faster-rcnn.pytorch-pytorch-1.0/data/xmls'

output_dir = '/root/faster-rcnn.pytorch-pytorch-1.0/data'

执行划分 (80% 训练集, 20% 验证集)

split_dataset(xml_dir, output_dir, train_percent=0.8)

代码修改

我主要涉及到五类,先修改如下:

背景不需要更改,只需要更改后面的类别。

跟着博主的描述操作,安装成功!

训练产生的报错以及解决:

发生报错:环境配置问题找 deepseek,涉及代码找豆包。(我最喜欢的搭配)

  • 没有安装torchversion

得按照博主的那个指令来才能顺带下载torchvision,

  • 找不到数据集路径

因为我数据集格式和博主不一样,最后让ai帮助我修改了pascalvoc.py就没有显示这个错误了。

  • 没有预训练模型

本地下载预训练模型(resnet/densenet/vgg等url地址)_resnet预训练模型下载-CSDN博客

下载后要更改模型名称为

复制代码
vgg16_caffe.pth

训练指令

运行下面的指令:(这个指令运行后它使用的是trainval.txt文件,如果你的是train得修改名称,不然会报错)

复制代码
CUDA_VISIBLE_DEVICES=0 python trainval_net.py  --dataset pascal_voc  --net vgg16  --bs 4  --nw 0  --lr 0.002 --cuda

像这样应该就是成功了,可以在文件中修改epoch。

需要各类别的精度以及总体精度的时候执行下面这条命令(需要根据产生的文件名进行修改):

chekepoch代表你要检测哪个文件

checkpoint应该每个人的都不一样,需要进行修改。

复制代码
python test_net.py --dataset pascal_voc --net vgg16 --checksession 1 --checkepoch 3 --checkpoint 1228  --cuda

PS:每一个epoch产生的pth文件非常占存储空间,建议更改存储路径。

相关推荐
l12345sy17 小时前
Day30_【NLP 自然语言处理(0)—入门】
人工智能·自然语言处理
猎板PCB黄浩18 小时前
PCB 半固化片:被忽视的成本控制关键,猎板的技术选型与安全适配策略
大数据·网络·人工智能
victory043118 小时前
BriLLM: Brain-inspired Large Language Model 文章评论
人工智能·机器学习·语言模型
一点一木18 小时前
🚀 2025 年 09 月 GitHub 十大热门项目排行榜 🔥
前端·人工智能·github
苏苏susuus18 小时前
NLP:讲解Bert模型的变体
人工智能·自然语言处理·bert
阿里云大数据AI技术18 小时前
云栖2025 | 阿里云AI搜索年度发布:开启Agent时代,重构搜索新范式
人工智能·阿里云·云栖大会·搜索
stjiejieto18 小时前
从工具到生产力:2025 年 “人工智能 +” 的产业落地全景与价值重构
大数据·人工智能·重构
stbomei18 小时前
通用人工智能(AGI):从技术探索到社会重构的 2025 展望
人工智能·重构·agi
年年测试18 小时前
Playwright web爬虫与AI智能体
前端·人工智能·爬虫
说私域18 小时前
基于定制开发开源AI智能名片S2B2C商城小程序的文案信息传达策略研究
大数据·人工智能·小程序