微调后的模型保存与加载

在Hugging Face Transformers库中,微调后的模型保存与加载方式因微调方法(如常规微调或参数高效微调)而异。

一、常规微调模型的保存与加载

1、 保存完整模型
  • 使用 save_pretrained() 方法可将整个模型(包含权重、配置、分词器)保存到指定目录:
    保存模型、分词器、配置
python 复制代码
model.save_pretrained("./my_finetuned_model")
tokenizer.save_pretrained("./my_finetuned_model")
  • 生成以下文件:

    pytorch_model.bin(或 tf_model.h5):模型权重

    config.json:模型结构配置

    tokenizer_config.json:分词器配置

2、加载模型
  • 通过 from_pretrained() 加载已保存的完整模型:
python 复制代码
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("./my_finetuned_model")
tokenizer = AutoTokenizer.from_pretrained("./my_finetuned_model")
3、将模型转换为 .safetensors 格式保存
python 复制代码
# 指定保存目录并启用安全序列化
save_path = "./saved_model"
model.save_pretrained(save_path, safe_serialization=True)  
  • 执行后会在 saved_model 目录生成以下文件:

    model.safetensors(权重文件)

    config.json(模型配置)

    tokenizer.json(分词器配置,如有)

4、分片保存大模型‌

针对体积较大的模型,可分割为多个 .safetensors 文件:

python 复制代码
# 设置分片尺寸(单位:MB)
model.save_pretrained(save_path, safe_serialization=True, max_shard_size="2GB")  
  • 生成文件名格式为 model-00001-of-00005.safetensors,并附带索引文件 model.safetensors.index.json。

二、参数高效微调(如LoRA)的保存与加载

1、仅保存适配器权重

使用LoRA等参数高效方法时,只需保存增量权重(通常几十MB):

  • 保存LoRA适配器
python 复制代码
model.save_pretrained("./lora_adapter")
  • 生成文件:
    adapter_model.bin(或 .safetensors):适配器权重
    adapter_config.json:适配器配置(含基础模型路径)
2、加载适配器

加载适配器,与原模型合并:

python 复制代码
from transformers import AutoModelForCausalLM
from peft import PeftModel, PeftConfig

# 加载基础模型
base_model = AutoModelForCausalLM.from_pretrained("./base_model")  

# 加载PEFT适配器
peft_config = PeftConfig.from_pretrained("./peft_adapter")
# 将adapter_model.safetensors中的低秩矩阵(如LoRA的A/B矩阵)加载到基础模型的指定位置(如q_proj、v_proj)
'''
PEFT的核心思想是通过冻结基础模型(如Llama-2、Mistral等)的原始参数,仅训练适配器层(如LoRA的低秩矩阵)。保存模型时:

​基础模型权重:保持原始精度(如FP32)或量化状态(如4-bit NF4)
​适配器参数:以独立文件存储(adapter_model.safetensors)
​配置元数据:记录适配器类型、注入位置等(adapter_config.json)
'''
peft_model = PeftModel.from_pretrained(base_model, "./peft_adapter")
3、合并权重
  • 若需独立部署,可将LoRA权重合并到原模型中:
python 复制代码
merged_model = model.merge_and_unload()
merged_model.save_pretrained("./merged_model")  # 保存完整模型(数GB)
  • 加载完整模型
python 复制代码
# 直接加载完整模型
full_model = AutoModelForCausalLM.from_pretrained("./full_model") 

三、使用Trainer API的自动保存

通过 TrainingArguments 设置自动保存策略:

python 复制代码
from transformers import TrainingArguments

args = TrainingArguments(
    output_dir="./results",
    save_strategy="epoch",  # 按epoch保存
    load_best_model_at_end=True  # 训练结束后加载最佳模型
)

训练完成后,最佳模型会保存在 output_dir 中

python 复制代码
trainer = Trainer(model, args, ...)
trainer.train()

四、unsloth 微调后的模型 保存

基于 Unsloth 的微调模型保存具有高度灵活性

1、LoRA 适配器轻量级保存
python 复制代码
model.save_pretrained("./lora_model")  # 仅保存适配器(约100MB)
tokenizer.save_pretrained("./lora_model")

特点:

  • 仅存储微调增量参数,适合迭代开发阶段

  • 需配合原始基础模型加载使用

  • 文件结构:adapter_model.bin + adapter_config.json

2、全量模型合并保存
  • 合并为FP16精度(生产环境推荐)
python 复制代码
model.save_pretrained_merged(
    output_dir="merged_16bit",
    tokenizer=tokenizer,
    save_method="merged_16bit"
)
  • 4位量化版(显存敏感场景)
python 复制代码
model.save_pretrained_merged(
    output_dir="merged_4bit",
    tokenizer=tokenizer,
    save_method="merged_4bit"
)
3、GGUF 高效推理格式导出
  • 标准Q8_0量化(平衡型)
python 复制代码
model.save_pretrained_gguf("gguf_model", tokenizer)
  • 极致压缩Q4_K_M(移动端适用)
python 复制代码
model.save_pretrained_gguf(
    "gguf_model",
    tokenizer,
    quantization_method="q4_k_m"
)
4、多格式混合保存
  • 适配器 + 合并模型 + GGUF
python 复制代码
model.save_pretrained("lora_model")  # 适配器
model.save_pretrained_merged(...)     # 16bit合并
model.save_pretrained_gguf(...)      # GGUF格式
相关推荐
Haooog1 小时前
AI应用代码生成平台
java·学习·大模型·langchain4j
千桐科技6 小时前
qKnow 知识平台商业版 v2.6.1 正式发布:移除对第三方 LLM 应用框架的依赖,一次真正走向自主可控的里程碑升级
大模型·知识图谱·图数据库·知识库·rag·qknow·知识平台
CoderJia程序员甲8 小时前
GitHub 热榜项目 - 日榜(2026-01-28)
人工智能·ai·大模型·github·ai教程
世优科技虚拟人9 小时前
从AI数字人讲解到MR数字人导览,数字人厂商革新文旅新服务
人工智能·大模型·数字人·智能交互
小哈里9 小时前
【计算】Ray框架介绍,AI基础设施之“通用”分布式计算(跨场景,门槛低,大规模生产,单机->集群->推理一站式)
人工智能·大模型·llm·分布式计算·ray
AI 菌10 小时前
DeepSeek-OCR v2 解读
人工智能·大模型·ocr·多模态
山顶夕景1 天前
【VLM】Visual Merit or Linguistic Crutch? 看DeepSeek-OCR
大模型·llm·ocr·多模态
wangmengxxw1 天前
SpringAI-mcp-sse方式
java·人工智能·大模型·sse·springai·mcp
梁辰兴1 天前
DeepSeek-OCR 2如何让AI像人类一样“看懂“复杂文档?
人工智能·ai·大模型·ocr·deepseek·梁辰兴·deepseek-ocr 2
中杯可乐多加冰1 天前
RAG 深度实践系列(三):RAG 技术演变与核心架构的深度剖析
人工智能·深度学习·大模型·llm·知识库·rag·graphrag