PyTorch中cdist和sum函数使用详解

torch.cdist 是 PyTorch 中用于计算**两个张量之间的成对距离(pairwise distance)**的函数,常用于点云处理、图神经网络、相似性度量等场景。


基本语法

python 复制代码
torch.cdist(x1, x2, p=2.0)

参数说明:

参数 说明
x1 一个形状为 [B, M, D][M, D] 的张量,表示一组点。
x2 一个形状为 [B, N, D][N, D] 的张量,表示另一组点。
p 距离范数,默认 p=2.0 表示欧几里得距离(L2 范数),也可以设为 1.0(曼哈顿距离),或其他值。

输出

输出是一个张量,形状为:

  • 如果 x1.shape = [M, D]x2.shape = [N, D],则输出形状为 [M, N]
  • 每个 (i, j) 位置表示 x1[i]x2[j] 之间的距离。

示例

1. 简单的 2D 欧几里得距离

python 复制代码
import torch

x1 = torch.tensor([[0.0, 0.0], [1.0, 0.0]])  # 2个点
x2 = torch.tensor([[0.0, 1.0], [1.0, 1.0]])  # 2个点

dist = torch.cdist(x1, x2, p=2)
print(dist)

输出为:

复制代码
tensor([[1.0000, 1.4142],
        [1.4142, 1.0000]])

即:

  • x1[0] 与 x2[0] 的距离为 1;
  • x1[0] 与 x2[1] 的距离为 sqrt(2),等等。

2. 批量形式(3D Tensor)

python 复制代码
x1 = torch.rand(2, 5, 3)  # batch=2, 每组5个3D点
x2 = torch.rand(2, 4, 3)  # batch=2, 每组4个3D点

out = torch.cdist(x1, x2)  # 输出形状为 [2, 5, 4]

3. 使用不同范数

python 复制代码
torch.cdist(x1, x2, p=1)   # 曼哈顿距离
torch.cdist(x1, x2, p=2)   # 欧几里得距离(默认)
torch.cdist(x1, x2, p=inf) # 最大维度差

注意事项

  • x1x2 的最后一维(特征维度)必须相同。
  • p=2 时效率最高,其他范数可能会慢一些。
  • 如果两个张量都很大,这个操作可能非常耗显存。

应用场景举例

  • 点云之间距离计算(如 ISS、FPFH、ICP)
  • 匹配点对的距离图构建
  • KNN 查询
  • 图构造(邻接矩阵、相容性矩阵)

torch.sum 是 PyTorch 中用于对张量元素进行求和的函数,功能类似于 NumPy 中的 np.sum,但可以更灵活地选择维度进行操作。


基本用法

python 复制代码
torch.sum(input, dim=None, keepdim=False)
参数说明:
  • input:要进行求和的张量;
  • dim(可选):指定在哪个维度上进行求和;
  • keepdim(可选):布尔值,是否保留被求和的维度(默认不保留)。

示例讲解

示例 1:对所有元素求和
python 复制代码
x = torch.tensor([[1, 2], [3, 4]])
torch.sum(x)
# 输出:tensor(10)
示例 2:指定维度求和
python 复制代码
x = torch.tensor([[1, 2], [3, 4]])

torch.sum(x, dim=0)  # 按列求和:1+3, 2+4
# 输出:tensor([4, 6])

torch.sum(x, dim=1)  # 按行求和:1+2, 3+4
# 输出:tensor([3, 7])
示例 3:保留维度
python 复制代码
x = torch.tensor([[1, 2], [3, 4]])

torch.sum(x, dim=1, keepdim=True)
# 输出:tensor([[3], [7]])

相关推荐
_waylau8 分钟前
【HarmonyOS NEXT+AI】问答08:仓颉编程语言是中文编程语言吗?
人工智能·华为·harmonyos·鸿蒙·仓颉编程语言·鸿蒙生态·鸿蒙6
攻城狮7号20 分钟前
Kimi 发布并开源 K2.5 模型:开始在逻辑和干活上卷你了
人工智能·ai编程·视觉理解·kimi code·kimi k2.5·agent 集群
szxinmai主板定制专家22 分钟前
基于 PC 的控制技术+ethercat+linux实时系统,助力追踪标签规模化生产,支持国产化
arm开发·人工智能·嵌入式硬件·yolo·fpga开发
测试开发Kevin27 分钟前
小tip:换行符CRLF 和 LF 的区别以及二者在实际项目中的影响
java·开发语言·python
爱学习的阿磊35 分钟前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python
阿狸OKay37 分钟前
einops 库和 PyTorch 的 einsum 的语法
人工智能·pytorch·python
低调小一41 分钟前
Google AI Agent 白皮书拆解(1):从《Introduction to Agents》看清 Agent 的工程底座
人工智能
feasibility.44 分钟前
混元3D-dit-v2-mv-turbo生成3D模型初体验(ComfyUI)
人工智能·3d·aigc·三维建模·comfyui
极智-9961 小时前
GitHub 热榜项目-日榜精选(2026-02-02)| AI智能体、终端工具、视频生成等 | openclaw、99、Maestro等
人工智能·github·视频生成·终端工具·ai智能体·电子书管理·rust工具
悟纤1 小时前
AI 音乐创作中的音乐织体(Texture)完整指南 | Suno高级篇 | 第30篇
人工智能·suno·suno ai·suno api·ai music