PyTorch中cdist和sum函数使用详解

torch.cdist 是 PyTorch 中用于计算**两个张量之间的成对距离(pairwise distance)**的函数,常用于点云处理、图神经网络、相似性度量等场景。


基本语法

python 复制代码
torch.cdist(x1, x2, p=2.0)

参数说明:

参数 说明
x1 一个形状为 [B, M, D][M, D] 的张量,表示一组点。
x2 一个形状为 [B, N, D][N, D] 的张量,表示另一组点。
p 距离范数,默认 p=2.0 表示欧几里得距离(L2 范数),也可以设为 1.0(曼哈顿距离),或其他值。

输出

输出是一个张量,形状为:

  • 如果 x1.shape = [M, D]x2.shape = [N, D],则输出形状为 [M, N]
  • 每个 (i, j) 位置表示 x1[i]x2[j] 之间的距离。

示例

1. 简单的 2D 欧几里得距离

python 复制代码
import torch

x1 = torch.tensor([[0.0, 0.0], [1.0, 0.0]])  # 2个点
x2 = torch.tensor([[0.0, 1.0], [1.0, 1.0]])  # 2个点

dist = torch.cdist(x1, x2, p=2)
print(dist)

输出为:

复制代码
tensor([[1.0000, 1.4142],
        [1.4142, 1.0000]])

即:

  • x1[0] 与 x2[0] 的距离为 1;
  • x1[0] 与 x2[1] 的距离为 sqrt(2),等等。

2. 批量形式(3D Tensor)

python 复制代码
x1 = torch.rand(2, 5, 3)  # batch=2, 每组5个3D点
x2 = torch.rand(2, 4, 3)  # batch=2, 每组4个3D点

out = torch.cdist(x1, x2)  # 输出形状为 [2, 5, 4]

3. 使用不同范数

python 复制代码
torch.cdist(x1, x2, p=1)   # 曼哈顿距离
torch.cdist(x1, x2, p=2)   # 欧几里得距离(默认)
torch.cdist(x1, x2, p=inf) # 最大维度差

注意事项

  • x1x2 的最后一维(特征维度)必须相同。
  • p=2 时效率最高,其他范数可能会慢一些。
  • 如果两个张量都很大,这个操作可能非常耗显存。

应用场景举例

  • 点云之间距离计算(如 ISS、FPFH、ICP)
  • 匹配点对的距离图构建
  • KNN 查询
  • 图构造(邻接矩阵、相容性矩阵)

torch.sum 是 PyTorch 中用于对张量元素进行求和的函数,功能类似于 NumPy 中的 np.sum,但可以更灵活地选择维度进行操作。


基本用法

python 复制代码
torch.sum(input, dim=None, keepdim=False)
参数说明:
  • input:要进行求和的张量;
  • dim(可选):指定在哪个维度上进行求和;
  • keepdim(可选):布尔值,是否保留被求和的维度(默认不保留)。

示例讲解

示例 1:对所有元素求和
python 复制代码
x = torch.tensor([[1, 2], [3, 4]])
torch.sum(x)
# 输出:tensor(10)
示例 2:指定维度求和
python 复制代码
x = torch.tensor([[1, 2], [3, 4]])

torch.sum(x, dim=0)  # 按列求和:1+3, 2+4
# 输出:tensor([4, 6])

torch.sum(x, dim=1)  # 按行求和:1+2, 3+4
# 输出:tensor([3, 7])
示例 3:保留维度
python 复制代码
x = torch.tensor([[1, 2], [3, 4]])

torch.sum(x, dim=1, keepdim=True)
# 输出:tensor([[3], [7]])

相关推荐
胡耀超2 分钟前
4、Python面向对象编程与模块化设计
开发语言·python·ai·大模型·conda·anaconda
研梦非凡25 分钟前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
Monkey的自我迭代29 分钟前
多目标轮廓匹配
人工智能·opencv·计算机视觉
每日新鲜事29 分钟前
Saucony索康尼推出全新 WOOOLLY 运动生活羊毛系列 生动无理由,从专业跑步延展运动生活的每一刻
大数据·人工智能
空白到白35 分钟前
机器学习-聚类
人工智能·算法·机器学习·聚类
中新赛克1 小时前
双引擎驱动!中新赛克AI安全方案入选网安创新大赛优胜榜单
人工智能·安全
zzzsde1 小时前
【数据结构】队列
数据结构·算法
飞哥数智坊1 小时前
解决AI幻觉,只能死磕模型?OpenAI给出不一样的思路
人工智能·openai
聚客AI1 小时前
🌈多感官AI革命:解密多模态对齐与融合的底层逻辑
人工智能·llm·掘金·日新计划
青 .1 小时前
数据结构---二叉搜索树的实现
c语言·网络·数据结构·算法·链表