支持向量机(SVM)例题

对于图中所示的线性可分的20个样本数据,利用支持向量机进行预测分类,有三个支持向量 A ( 0 , 2 ) A(0, 2) A(0,2)、 B ( 2 , 0 ) B(2, 0) B(2,0) 和 C ( − 1 , − 1 ) C(-1, -1) C(−1,−1)。

  1. 求支持向量机的线性判别函数。
  2. 删除点 A 后,支持向量是否变化?

求解:

  1. 三个点,建立联立方程组:
    { w 1 x A + w 2 y A + b = 1 w 1 x B + w 2 y B + b = 1 w 1 x C + w 2 y C + b = − 1 \begin{cases} w_1 x_A + w_2 y_A + b &= 1 \\ w_1 x_B + w_2 y_B + b &= 1 \\ w_1 x_C + w_2 y_C + b &= -1 \\ \end{cases} ⎩ ⎨ ⎧w1xA+w2yA+bw1xB+w2yB+bw1xC+w2yC+b=1=1=−1

x A y A 1 x B y B 1 x C y C 1 \] \[ w 1 w 2 b \] = \[ 1 − 1 − 1 \] \\begin{bmatrix} x_A \& y_A \& 1 \\\\ x_B \& y_B \& 1 \\\\ x_C \& y_C \& 1 \\\\ \\end{bmatrix} \\begin{bmatrix} w_1 \\\\ w_2 \\\\ b \\\\ \\end{bmatrix}=\\begin{bmatrix} 1 \\\\ -1 \\\\ -1 \\\\ \\end{bmatrix} xAxBxCyAyByC111 w1w2b = 1−1−1 求解 w 1 = 0.5 w 2 = 0.5 b = 0 \\begin{align\*} w_1 \&= 0.5 \\\\ w_2 \&= 0.5 \\\\ b \&= 0 \\\\ \\end{align\*} w1w2b=0.5=0.5=0 线性判别函数 f ( x ) = 0.5 x + 0.5 y f(x) = 0.5x + 0.5y f(x)=0.5x+0.5y 2. 变化

相关推荐
熙xi.22 分钟前
数据结构 -- 哈希表和内核链表
数据结构·算法·散列表
Ghost-Face34 分钟前
并查集提高——种类并查集(反集)
算法
董董灿是个攻城狮1 小时前
5分钟搞懂大模型微调的原始能力退化问题
算法
boooo_hhh2 小时前
第41周——人脸图像生成
机器学习
鲸鱼24013 小时前
线性回归笔记
机器学习·平面·线性回归
艾醒5 小时前
大模型面试题剖析:大模型微调与训练硬件成本计算
人工智能·后端·算法
LLM精进之路6 小时前
上海AI实验室突破扩散模型!GetMesh融合点云与三平面,重塑3D内容创作
人工智能·深度学习·机器学习·语言模型·transformer
啊嘞嘞?6 小时前
力扣(滑动窗口最大值)
算法·leetcode·职场和发展
快递鸟6 小时前
ISV系统开发中物流接口的第三方模块对接:技术选型与集成实践
算法
墨染点香6 小时前
LeetCode 刷题【53. 最大子数组和】
数据结构·算法·leetcode