支持向量机(SVM)例题

对于图中所示的线性可分的20个样本数据,利用支持向量机进行预测分类,有三个支持向量 A ( 0 , 2 ) A(0, 2) A(0,2)、 B ( 2 , 0 ) B(2, 0) B(2,0) 和 C ( − 1 , − 1 ) C(-1, -1) C(−1,−1)。

  1. 求支持向量机的线性判别函数。
  2. 删除点 A 后,支持向量是否变化?

求解:

  1. 三个点,建立联立方程组:
    { w 1 x A + w 2 y A + b = 1 w 1 x B + w 2 y B + b = 1 w 1 x C + w 2 y C + b = − 1 \begin{cases} w_1 x_A + w_2 y_A + b &= 1 \\ w_1 x_B + w_2 y_B + b &= 1 \\ w_1 x_C + w_2 y_C + b &= -1 \\ \end{cases} ⎩ ⎨ ⎧w1xA+w2yA+bw1xB+w2yB+bw1xC+w2yC+b=1=1=−1

x A y A 1 x B y B 1 x C y C 1 \] \[ w 1 w 2 b \] = \[ 1 − 1 − 1 \] \\begin{bmatrix} x_A \& y_A \& 1 \\\\ x_B \& y_B \& 1 \\\\ x_C \& y_C \& 1 \\\\ \\end{bmatrix} \\begin{bmatrix} w_1 \\\\ w_2 \\\\ b \\\\ \\end{bmatrix}=\\begin{bmatrix} 1 \\\\ -1 \\\\ -1 \\\\ \\end{bmatrix} xAxBxCyAyByC111 w1w2b = 1−1−1 求解 w 1 = 0.5 w 2 = 0.5 b = 0 \\begin{align\*} w_1 \&= 0.5 \\\\ w_2 \&= 0.5 \\\\ b \&= 0 \\\\ \\end{align\*} w1w2b=0.5=0.5=0 线性判别函数 f ( x ) = 0.5 x + 0.5 y f(x) = 0.5x + 0.5y f(x)=0.5x+0.5y 2. 变化

相关推荐
心软且酷丶1 小时前
leetcode:263. 丑数(python3解法,数学相关算法题)
python·算法·leetcode
Cyrus_柯1 小时前
C++(面向对象编程——关键字)
开发语言·c++·算法·面向对象
2013编程爱好者2 小时前
C++二分查找
开发语言·c++·算法·二分查找
点云SLAM3 小时前
Pytorch中gather()函数详解和实战示例
人工智能·pytorch·python·深度学习·机器学习·计算视觉·gather函数
এ᭄画画的北北4 小时前
力扣-139.单词拆分
算法·leetcode
完美的奶酪4 小时前
Leetcode-2537. 统计好子数组的数目
算法·leetcode
伊欧温4 小时前
最大公约数
c语言·算法
天机️灵韵5 小时前
谷歌时间序列算法:零样本预测如何重塑行业决策?
人工智能·python·算法·开源项目
猫头虎-人工智能5 小时前
数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全
人工智能·opencv·线性代数·机器学习·计算机视觉·数据挖掘·语音识别