支持向量机(SVM)例题

对于图中所示的线性可分的20个样本数据,利用支持向量机进行预测分类,有三个支持向量 A ( 0 , 2 ) A(0, 2) A(0,2)、 B ( 2 , 0 ) B(2, 0) B(2,0) 和 C ( − 1 , − 1 ) C(-1, -1) C(−1,−1)。

  1. 求支持向量机的线性判别函数。
  2. 删除点 A 后,支持向量是否变化?

求解:

  1. 三个点,建立联立方程组:
    { w 1 x A + w 2 y A + b = 1 w 1 x B + w 2 y B + b = 1 w 1 x C + w 2 y C + b = − 1 \begin{cases} w_1 x_A + w_2 y_A + b &= 1 \\ w_1 x_B + w_2 y_B + b &= 1 \\ w_1 x_C + w_2 y_C + b &= -1 \\ \end{cases} ⎩ ⎨ ⎧w1xA+w2yA+bw1xB+w2yB+bw1xC+w2yC+b=1=1=−1

x A y A 1 x B y B 1 x C y C 1 \] \[ w 1 w 2 b \] = \[ 1 − 1 − 1 \] \\begin{bmatrix} x_A \& y_A \& 1 \\\\ x_B \& y_B \& 1 \\\\ x_C \& y_C \& 1 \\\\ \\end{bmatrix} \\begin{bmatrix} w_1 \\\\ w_2 \\\\ b \\\\ \\end{bmatrix}=\\begin{bmatrix} 1 \\\\ -1 \\\\ -1 \\\\ \\end{bmatrix} xAxBxCyAyByC111 w1w2b = 1−1−1 求解 w 1 = 0.5 w 2 = 0.5 b = 0 \\begin{align\*} w_1 \&= 0.5 \\\\ w_2 \&= 0.5 \\\\ b \&= 0 \\\\ \\end{align\*} w1w2b=0.5=0.5=0 线性判别函数 f ( x ) = 0.5 x + 0.5 y f(x) = 0.5x + 0.5y f(x)=0.5x+0.5y 2. 变化

相关推荐
福尔摩斯张10 分钟前
C语言核心:string函数族处理与递归实战
c语言·开发语言·数据结构·c++·算法·c#
大佬,救命!!!20 分钟前
最新的python3.14版本下仿真环境配置深度学习机器学习相关
开发语言·人工智能·python·深度学习·机器学习·学习笔记·环境配置
T***u33342 分钟前
Java机器学习框架
java·开发语言·机器学习
vvoennvv1 小时前
【Python TensorFlow】 CNN-GRU卷积神经网络-门控循环神经网络时序预测算法(附代码)
python·神经网络·机器学习·cnn·gru·tensorflow
吗~喽1 小时前
【LeetCode】滑动窗口_水果成篮_C++
c++·算法·leetcode
立志成为大牛的小牛1 小时前
数据结构——四十九、B树的删除与插入
数据结构·学习·程序人生·考研·算法
高洁012 小时前
具身智能-普通LLM智能体与具身智能:从语言理解到自主行动 (2)
深度学习·算法·aigc·transformer·知识图谱
l1t2 小时前
使用DuckDB SQL求解Advent of Code 2024第9题 磁盘碎片整理
数据库·sql·算法·duckdb·advent of code
小南家的青蛙2 小时前
LeetCode面试题 04.06 后继者
算法·leetcode·职场和发展
极客BIM工作室2 小时前
理清 BERT 中 [CLS] 向量的核心逻辑:训练双向更新与推理作用不矛盾
人工智能·机器学习·bert