
_source 字段包含索引时传入的原始 JSON 文档体。_source 字段本身不被索引(因此不可搜索),但会被存储,以便在执行获取请求(如 get 或 search)时返回。
如果磁盘使用很重要,可以考虑以下选项:
- 使用 synthetic _source,在检索时重建源内容,而不是存储在磁盘上。这样可以减少磁盘使用,但会导致 Get 和 Search 查询中访问 _source 变慢。
- 完全禁用 _source 字段。这样可以减少磁盘使用,但会禁用依赖 _source 的功能。
什么是 synthetic _source?
当文档被索引时,有些字段,比如需要生成 doc_values 或 stored fileds,来自 _source 的字段值会根据数据类型复制到独立的列表 doc_values 中(磁盘上的不同数据结构,用于模式匹配),这样可以独立搜索这些值。当在这些小列表中找到所需值后,返回原始文档。由于只搜索了小列表,而不是整个文档的所有字段值,搜索所需的时间会减少。虽然这种处理方式提升了速度,但会在小列表和原始文档中存储重复的数据。
更多阅读:
Synthetic _source 是一种索引配置模式,可以改变文档在摄取时的处理方式,以节省存储空间并避免数据重复。它会创建独立的列表,但不会保留原始的原始文档。相反,在找到值后,会使用小列表中的数据重建 _source 内容。由于没有存储原始文档,仅在磁盘上存储 "列表",可以节省大量存储空间。
PUT idx
{
"settings": {
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
}
}
需要注意的是,由于 _source 值是在文档被检索时即时重建的,因此需要额外时间来完成重建。这会为用户节省存储空间,但会降低搜索速度。虽然这种即时重建通常比直接保存源文档并在查询时加载更慢,但它节省了大量存储空间。通过在不需要时不加载 _source 字段,可以避免额外的延迟。
Synthetic _source 目前被广泛使用于 logsdb 及 TSDB。它可以帮我们节省许多的磁盘空间。
Elasticsearch 8.17 Logsdb:企业降本增效利器
支持的字段
Synthetic _source 支持所有字段类型。根据实现细节,不同字段类型在使用 synthetic _source 时具有不同属性。
大多数字段类型使用现有数据构建 synthetic _source,最常见的是 doc_values 和 stored fields。对于这些字段类型,不需要额外空间来存储 _source 字段内容。由于 doc_values 的存储布局,生成的 _source 字段相比原始文档会有修改。
对于其他所有字段类型,字段的原始值会按原样存储,方式与非 synthetic 模式下的 _source 字段相同。这种情况下不会有修改,_source 中的字段数据与原始文档相同。同样,使用 ignore_malformed 或 ignore_above 的字段的格式错误值也需要按原样存储。这种方式存储效率较低,因为为 _source 重建所需的数据除了索引字段所需的其他数据(如 doc_values)外,还会额外存储。
Synthetic _source 限制
某些字段类型有额外限制,这些限制记录在字段类型文档的 synthetic _source 部分。
Synthetic _source 不支持仅存储源的快照仓库。要存储使用 synthetic _source 的索引,请选择其他类型的仓库。
Synthetic _source 修改
启用 synthetic _source 时,检索到的文档相比原始 JSON 会有一些修改。
数组被移动到叶子字段
Synthetic _source 中的数组会被移动到叶子字段。例如:
由于 _source 值是通过 "doc values" 列表中的值重建的,因此原始 JSON 会被做一些修改。例如,数组会被移到叶子节点。
PUT idx/_doc/1
{
"foo": [
{
"bar": 1
},
{
"bar": 2
}
]
}
将变为:
{
"foo": {
"bar": [1, 2]
}
}
这可能导致某些数组消失:
PUT idx/_doc/1
{
"foo": [
{
"bar": 1
},
{
"baz": 2
}
]
}
将变为:
{
"foo": {
"bar": 1,
"baz": 2
}
}
字段名称与映射一致
Synthetic _source 使用映射中字段的原始名称。当与动态映射一起使用时,字段名中带点(.)的字段默认被解释为多个对象,而在禁用子对象的对象中,字段名中的点会被保留。例如:
PUT idx/_doc/1
{
"foo.bar.baz": 1
}
将变为:
{
"foo": {
"bar": {
"baz": 1
}
}
}
如何将索引配置为 synthetic _source 模式
测试代码:在此测试中,将 synthetic _source 模式下的索引与标准索引进行对比。
PUT index
{
"settings": {
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
}
}
测试
标准索引使用 multi-field 来说明如何通过全文搜索和聚合检索文档,并在 _source 内容中包含已禁用字段的值。
PUT test_standard
{
"mappings": {
"properties": {
"disabled_field": {
"enabled": false
},
"multi_field": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
}
}
}
}
让我们导入一些示例文档:
PUT test_standard/_doc/1
{
"multi_field": "Host_01",
"disabled_field" : "Required for storage 01"
}
PUT test_standard/_doc/2
{
"multi_field": "Host_02",
"disabled_field" : "Required for storage 02"
}
PUT test_standard/_doc/3
{
"multi_field": "Host_03",
"disabled_field" : "Required for storage 03"
}
全文搜索会检索带有 _source 内容的文档:
GET test_standard/_search
{
"query": {
"match": {
"multi_field": "host_01"
}
}
}
结果:文档通过对已分析的字段进行全文搜索被检索到。返回的结果包含 _source 中的所有值,包括已被禁用的字段:
{
"took": 17,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 0.9808291,
"hits": [
{
"_index": "test_standard",
"_id": "1",
"_score": 0.9808291,
"_source": {
"multi_field": "Host_01",
"disabled_field": "Required for storage 01"
}
}
]
}
}
这里,synthetic _source 模式下的索引使用 multi-fields 来说明 "text" 数据类型如何用于 "doc values" 列表,以及禁用字段中的值如何不可用。
PUT test_synthetic
{
"settings": {
"index": {
"mapping": {
"source": {
"mode": "synthetic"
}
}
}
},
"mappings": {
"properties": {
"keyword_field": {
"type": "keyword"
},
"multi_field": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword"
}
}
},
"text_field": {
"type": "text"
},
"disabled_field": {
"enabled": false
},
"skill_array_field": {
"properties": {
"language": {
"type": "text"
},
"level": {
"type": "text"
}
}
}
}
}
}
让我们导入一些示例文档:
PUT test_synthetic/_doc/1
{
"keyword_field": "Host_01",
"disabled_field": "Required for storage 01",
"multi_field": "Some info about computer 1",
"text_field": "This is a text field 1",
"skills_array_field": [
{
"language": "ruby",
"level": "expert"
},
{
"language": "javascript",
"level": "beginner"
}
],
"foo": [
{
"bar": 1
},
{
"bar": 2
}
],
"foo1.bar.baz": 1
}
PUT test_synthetic/_doc/2
{
"keyword_field": "Host_02",
"disabled_field": "Required for storage 02",
"multi_field": "Some info about computer 2",
"text_field": "This is a text field 2",
"skills_array_field": [
{
"language": "C",
"level": "guru"
},
{
"language": "javascript",
"level": "beginner"
}
],
"foo": [
{
"bar": 1
},
{
"bar": 2
}
],
"foo1.bar.baz": 2
}
PUT test_synthetic/_doc/3
{
"keyword_field": "Host_03",
"disabled_field": "Required for storage 03",
"multi_field": "Some info about computer 3",
"text_field": "This is a text field 3",
"skills_array_field": [
{
"language": "golang",
"level": "beginner"
}
],
"foo": [
{
"bar": 1
},
{
"bar": 2
}
],
"foo1.bar.baz": 3
}
搜索 "keyword" 数据类型时需要精确匹配。另外,禁用字段中的值也不再可用。
GET test_synthetic/_search
{
"query": {
"match": {
"keyword_field": "Host_01"
}
}
}
响应**:**
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 0.9808291,
"hits": [
{
"_index": "test_synthetic",
"_id": "1",
"_score": 0.9808291,
"_source": {
"keyword_field": "Host_01",
"disabled_field": "Required for storage 01",
"multi_field": "Some info about computer 1",
"text_field": "This is a text field 1",
"skills_array_field": [
{
"language": "ruby",
"level": "expert"
},
{
"language": "javascript",
"level": "beginner"
}
],
"foo": [
{
"bar": 1
},
{
"bar": 2
}
],
"foo1.bar.baz": 1
}
}
]
}
}
我们再做一次搜索:
GET test_synthetic/_search
{
"query": {
"match": {
"multi_field": "info"
}
}
}
响应是:
{
"took": 1,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 3,
"relation": "eq"
},
"max_score": 0.13353139,
"hits": [
{
"_index": "test_synthetic",
"_id": "2",
"_score": 0.13353139,
"_source": {
"keyword_field": "Host_02",
"disabled_field": "Required for storage 02",
"multi_field": "Some info about computer 2",
"text_field": "This is a text field 2",
"skills_array_field": [
{
"language": "C",
"level": "guru"
},
{
"language": "javascript",
"level": "beginner"
}
],
"foo": [
{
"bar": 1
},
{
"bar": 2
}
],
"foo1.bar.baz": 2
}
},
{
"_index": "test_synthetic",
"_id": "3",
"_score": 0.13353139,
"_source": {
"keyword_field": "Host_03",
"disabled_field": "Required for storage 03",
"multi_field": "Some info about computer 3",
"text_field": "This is a text field 3",
"skills_array_field": [
{
"language": "golang",
"level": "beginner"
}
],
"foo": [
{
"bar": 1
},
{
"bar": 2
}
],
"foo1.bar.baz": 3
}
},
{
"_index": "test_synthetic",
"_id": "1",
"_score": 0.13353139,
"_source": {
"keyword_field": "Host_01",
"disabled_field": "Required for storage 01",
"multi_field": "Some info about computer 1",
"text_field": "This is a text field 1",
"skills_array_field": [
{
"language": "ruby",
"level": "expert"
},
{
"language": "javascript",
"level": "beginner"
}
],
"foo": [
{
"bar": 1
},
{
"bar": 2
}
],
"foo1.bar.baz": 1
}
}
]
}
}
更多阅读,请参考官方文档:_source field | Elastic Documentation