手写字魔法消除3:深度学习PmrNet神经网络实现图片修复(含训练代码、数据集和GUI交互界面)

第一步: PmrNet介绍

PmrNet是一种基于U-Net架构改进的深度学习网络,来自于论文《Practical Deep Raw Image Denoising on Mobile Devices》,这个网络聚焦于在移动设备上实现高效的原始图像(RAW)去噪(本文用来做手写字消除),解决了传统方法在计算资源受限的移动端难以部署的问题。


​核心特点​

高效网络设计​
  • ​轻量级架构​:采用计算高效的U-Net变体,减少参数量和计算量。
  • ​注意力机制优化​:引入通道注意力等轻量化注意力模块,提升去噪效果而不显著增加计算负担。
  • ​量化与加速​:应用模型量化(如8位整数量化)和硬件感知的加速技术(如ARM NEON指令集),适配移动CPU/DSP。

第二步:PmrNet网络结构

作者所设计的降噪模型就是一种简单但带残差连接的UNet架构,其中UNet部分包含4个encode以及4个decoder。 为确保降噪模型可以更好的运行在手机端,作者采用分离卷积以降低计算量,常规卷积仅在网络的头和尾部应用。在encoder部分,作者采用5×5卷积提升感受野并降低网络深度,下采样模块则采用stride=2的卷积;在decoder部分,作则会采用3×3分离卷积,上采样模块则采用2×2反卷积。对应的encoder与decoder通过残差连接方式进行特征融合,在融合之前先对encoder特征采用3×3分离卷积进行通道维度对齐。最后,将所学习到的残差与输入图像相加即可得到降噪结果。

第三步:模型代码展示

python 复制代码
class PmrNet(nn.Module):
    def __init__(self, in_channels=1):
        super(PmrNet, self).__init__()

        self.conv0 = Conv2D(in_channels=in_channels, out_channels=16, kernel_size=3, padding=1, stride=1,
                            is_seperable=False,
                            has_relu=True)
        self.enc1 = EncoderStage(in_channels=16, out_channels=64, num_blocks=2)
        self.enc2 = EncoderStage(in_channels=64, out_channels=128, num_blocks=2)
        self.enc3 = EncoderStage(in_channels=128, out_channels=256, num_blocks=4)
        self.enc4 = EncoderStage(in_channels=256, out_channels=512, num_blocks=4)

        self.encdec = Conv2D(in_channels=512, out_channels=64, kernel_size=3, padding=1, stride=1, is_seperable=True,
                             has_relu=True)
        self.dec1 = DecoderStage(in_channels=64, skip_in_channels=256, out_channels=64)
        self.dec2 = DecoderStage(in_channels=64, skip_in_channels=128, out_channels=32)
        self.dec3 = DecoderStage(in_channels=32, skip_in_channels=64, out_channels=32)
        self.dec4 = DecoderStage(in_channels=32, skip_in_channels=16, out_channels=16)

        self.out0 = DecoderBlock(in_channels=16, out_channels=16, kernel_size=3)
        self.out1 = Conv2D(in_channels=16, out_channels=in_channels, kernel_size=3, stride=1, padding=1,
                           is_seperable=False,
                           has_relu=False)

    def forward(self, inp):
        conv0 = self.conv0(inp)
        conv1 = self.enc1(conv0)
        conv2 = self.enc2(conv1)
        conv3 = self.enc3(conv2)
        conv4 = self.enc4(conv3)

        conv5 = self.encdec(conv4)

        up3 = self.dec1((conv5, conv3))
        up2 = self.dec2((up3, conv2))
        up1 = self.dec3((up2, conv1))
        x = self.dec4((up1, conv0))

        x = self.out0(x)
        x = self.out1(x)

        pred = inp + x
        return pred

第四步:运行交互代码

第五步:整个工程的内容

项目完整文件下载请见演示与介绍视频的简介处给出:➷➷➷

手写字魔法消除:深度学习PmrNet神经网络实现图片修复(含训练代码、数据集和GUI交互界面)_哔哩哔哩_bilibili

相关推荐
岁月宁静1 天前
Vue3.5 + SSE 构建高可用 AI 聊天交互层 ——chat.js 模块架构与实现
前端·vue.js·人工智能
l12345sy1 天前
Day31_【 NLP _1.文本预处理 _(3)文本数据分析】
人工智能·自然语言处理·数据分析
精灵vector1 天前
构建自定义AI客户支持助手——LangGraph 中断机制
人工智能·python
算家计算1 天前
DeepSeek发布新模型!采用全新稀疏注意力架构设计,与国产芯片协同优化
人工智能·开源·deepseek
大囚长1 天前
从AI角度深入解析和论述哲学的终极答案‘语言即世界‘
人工智能·搜索引擎
北京地铁1号线1 天前
机器学习笔试选择题:题组2
人工智能·算法·机器学习
算家云1 天前
OpenAI秘密测试ChatGPT安全路由,情感对话触发GPT-5严格审查
人工智能·chatgpt·算家云·openai秘密测试安全路由·算家计算·租算力,就到算家云
新加坡内哥谈技术1 天前
OpenAI近日推出了一项名为 ChatGPT Pulse 的全新功能
人工智能·chatgpt
hunteritself1 天前
DeepSeek V3.1-Terminus、阿里 Qwen3-Max、ChatGPT Pulse 同周登场!| AI Weekly 9.22-9.28
人工智能·ios·chatgpt·语音识别·iphone
ai_xiaogui1 天前
ChatGPT开源模型发布!部署20B/120B AI模型实战指南
人工智能·chatgpt·20b 120b模型部署教程·本地部署chatgpt模型实战·高性能加速开源ai模型开发·开源模型windows配置方法