把数据库做得能扩展:Aurora DSQL 的故事

把数据库做得能扩展:Aurora DSQL 的故事

我们在 AWS re:Invent 上发布了 Aurora DSQL,这是一个全新方式构建关系型数据库的尝试。它不是单纯的技术升级,而是一段从零开始、反复试错、不断学习的工程旅程。

我们为什么做 Aurora DSQL?

AWS 从最早的 RDS 到 DynamoDB、Redshift、Aurora,一直在为客户打造专用型数据库。这些服务解决了客户遇到的实际问题,比如:如何处理超大规模的数据、如何加快查询速度、怎样减轻数据库维护负担等。

但我们还缺了一个拼图:一个真正 可自动扩展、无需人工维护 的 SQL 数据库。Aurora 和 Aurora Serverless 已经向这个目标迈出了一步,但我们想做得更多、更彻底。

DSQL 是什么?

DSQL 把数据库拆成多个模块,每个模块只做一件事,但配合起来可以完成完整数据库功能,比如事务、查询、一致性、并发等。

最难的是如何扩展写操作。传统方法很复杂,容易出错。我们决定换一种思路,把一次写入的全部数据打包写入一个地方,这样简单、可靠。但这样做导致读取数据变复杂,因为要到处找更新数据。

为了解决这个问题,我们设计了 Crossbar

Crossbar 是一个关键组件,能高效管理读写扩展。它允许存储节点只接收相关的数据,而不是所有数据都广播一遍。不过这个系统很难实现,还带来了一堆新问题,比如网络压力、延迟、垃圾回收等。

我们模拟测试后发现问题很严重:只要有一台机器慢,整个系统就变慢了。我们需要根本的改变。

于是,我们选择了 Rust

最初我们的代码是用 Java 的 JVM 平台写的。但 JVM 的垃圾回收机制让我们在高负载下很难保证低延迟。C/C++ 太容易出内存问题。Rust 则给了我们意想不到的答案:

  • 没有垃圾回收,性能稳定
  • 内存安全,避免很多 bug
  • 写出来的代码非常快(比我们优化多年的 Java 版本快 10 倍)

我们决定用 Rust 重写整个数据库核心。控制层最开始还保留在 Kotlin,但最终也迁移到了 Rust,因为:

  • Rust 写的逻辑更一致,便于测试和调试
  • 不同语言导致重复代码、不同表现
  • 开发人员反而更喜欢 Rust,学得快、写得顺
遇到的挑战和收获
  • Rust 学起来不容易,但一旦学会,效率很高
  • Postgres 虽然是用 C 写的,但我们用 Rust 写扩展,反而更安全
  • 决策时最重要的是看团队需求、项目特点,而不是语言流行度
最后的总结

DSQL 的开发不是一蹴而就的,而是靠一步步尝试和不断调整得来的。Rust 最终帮我们打造了一个更稳定、更快速、更可扩展的数据库。它未必适合每个项目,但对我们来说,是个对的选择。

我们最大的收获不是代码写得多快,而是团队一起面对挑战、不断进步的过程。

相关推荐
致Great9 分钟前
MCP出现的意义是什么?让 AI 智能体更模块化
大数据·人工智能·rag
沉到海底去吧Go17 分钟前
【工具教程】识别PDF中文字内容,批量识别文字并保存到Excel表格中的操作步骤和方法
人工智能·pdf·excel·pdf识别改名·pdf图片区域是被改名·pdf读取内容改名·pdf提取内容导出表格
远方160920 分钟前
53-Oracle sqlhc多版本实操含(23 ai)
大数据·数据库·sql·oracle·database
Wilber的技术分享32 分钟前
【机器学习实战笔记 12】集成学习:AdaBoost算法
人工智能·笔记·算法·决策树·机器学习·分类·集成学习
ZHOU_WUYI36 分钟前
Python Minio库连接和操作Minio数据库
数据库·ragflow
明月与玄武36 分钟前
Python爬虫工作基本流程及urllib模块详解
开发语言·爬虫·python
安 当 加 密43 分钟前
如何通过密钥管理系统实现数据库、操作系统账号和密码的安全管理
网络·数据库·安全
一ge科研小菜鸡1 小时前
编程语言的演化与选择:技术浪潮中的理性决策
java·c语言·python
小和尚同志1 小时前
在 Dify 中使用 DeepWiki 官方提供的 MCP 服务
人工智能·aigc
nbsaas-boot1 小时前
基于存储过程的MySQL自动化DDL同步系统设计
数据库·mysql·自动化