ICASSP2025丨融合语音停顿信息与语言模型的阿尔兹海默病检测

阿尔兹海默病(Alzheimer's Disease, AD)是一种以认知能力下降和记忆丧失为特征的渐进性神经退行性疾病,及早发现对于其干预和治疗至关重要。近期,清华大学语音与音频技术实验室(SATLab)提出了一种将停顿信息进行编码,并与语言模型中的文本嵌入融合的方法,可以有效提升基于自发语音的AD检测效果。该论文已发表于ICASSP 2025。

论文链接: https://arxiv.org/abs/2501.06727

背景介绍

阿尔兹海默病(Alzheimer's Disease, AD)是一种神经退行性疾病。患上阿尔兹海默病后,患者的大脑会发生病理变化,导致认知能力下降、表达能力退化等现象。临床研究表明,早期治疗可以有效延缓阿尔兹海默病的恶化。因此,AD检测方法的开发对于该疾病的及早诊治至关重要。

阿尔兹海默病对患者自发语音内容的影响促使人们探索自然语言处理技术,以实现可靠的AD检测。而AD检测中另一个关键指标是语音中的停顿,而通过语音停顿检测阿尔兹海默病在最近的文献中得到了广泛关注。

虽然目前已有一些将停顿信息与语言特征相结合的尝试,但还没有一种方法能将停顿信息深度融合到语言模型中。在本文中,我们提出了一种方法,在语言模型的编码阶段将停顿与文本内容相结合,以捕捉语音中的语义和副语言特征,从而提高 AD 检测的性能。

工作原理

在我们的方法中,我们利用预训练的 BERT 模型作为基础模型来捕捉语义信息。而停顿信息在被编码后与现有的词嵌入一起集成到 BERT 模型架构中。我们采用可学习的嵌入映射方法, 将每一个单词的持续时间和停顿时间分别编码为嵌入。然后,将这两个嵌入在特征维度上拼接起来,并将其添加到词嵌入中,从而在 BERT 模型的编码阶段将停顿信息与文本信息融合在一起。

在停顿信息的编码过程中,我们引入了一种将时间特征编码到嵌入中的新方法。使用WhisperX语音识别模型转录自发语音后,我们提取转录文本中每个单词的持续时间和停顿时间,将它们结合为一个停顿标记,并在一定区间内进行均匀量化,得到一个停顿标记的码本,之后对其进行可学习的嵌入映射。

实验结果

在ADReSS数据集上,所提出的模型取得了81.2%的准确率,优于之前结合停顿与文本特征的模型BERT3p ;在ADReSSo数据集上,所提出的模型展现了更好的泛化性,83.1%的准确率优于BERT3p及其他使用停顿特征的模型。该结果证明了所提出方法的有效性。

结 论

本文研究表明,将停顿信息融入语言模型能够有效提升阿尔兹海默病的检测性能。通过捕捉自发语音中的时间特征,模型在区分AD患者与健康个体方面表现出更强的判别能力,验证了停顿作为潜在生物标志物在AD早期检测中的应用价值。本研究为构建更精准、非侵入性、低成本的AD检测手段提供了新思路,对推动神经退行性疾病的早期诊断和治疗具有重要意义。

学生作者信息

蒲钰,清华大学电子系二年级硕士生,研究方向为阿尔兹海默病检测和端到端语音交互。

点击下面【阅读原文】跳转arXiv获取全文:

相关推荐
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案7 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
AC赳赳老秦8 小时前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek
wm10438 小时前
机器学习之线性回归
人工智能·机器学习·线性回归
通义灵码8 小时前
Qoder 支持通过 DeepLink 添加 MCP Server
人工智能·github·mcp
hkNaruto8 小时前
【AI】AI学习笔记:MCP协议与gRPC、OpenAPI的差异
人工智能·笔记·学习
狮子座明仔8 小时前
SimpleMem:让AI智能体拥有“过目不忘“的高效记忆系统
人工智能·microsoft
roamingcode8 小时前
超越 Context Window:为何文件系统是 AI Agent 的终极记忆体
人工智能·agent·cursor·claude code·上下文工程·skill 技能
笨鸟笃行8 小时前
0基础小白使用ai能力将本地跑的小应用上云(作为个人记录)
人工智能·学习
低调小一8 小时前
AI 时代旧敏捷开发的核心矛盾与系统困境
人工智能·敏捷流程