霹雳吧啦Wz_深度学习-图像分类篇章_1.1 卷积神经网络基础_笔记

深度学习-图像分类篇章

参考笔记

卷积神经网络

  1. 英文:Convolutional Neural Network,CNN
  2. 雏形:1998年LeCun的LeNet5,第一个卷积神经网络
  3. 包含:
    • 卷积层:Convolutions
    • 下采样层:Subsampling
    • 全连阶层:Full connection

全连阶层

  1. 神经元
  2. BP神经网络:神经元按列排列,列与列全脸机
    • 误差值:从左到右网络输出一个值,与期望输出对比得到
    • 每个节点的偏导数->每个节点的误差梯度
    • 损失值应用误差梯度->误差的反向传播

卷积层

  1. 卷积网络特有的网络结构
  2. 卷积:
  • 目的:提取特征
  • 过程:一个滑动窗口在特征图上滑动
  • 特性:
    • 局部感知
    • 权值共享:渐少参数量
  1. 特点:
  • 卷积核的channel = 输入特征图的channel
  • 输出特征channel = 卷积核个数
  1. 偏置:
  • 卷积得到的向量+偏置值
  1. 激活函数
  • 加入非线性变换
  • 分类:
    • sigmoid:求导麻烦
    • ReLu:使用较多,但要求学习率不能太大,否则神经元失活多

池化层

  1. 稀疏处理,渐少运算量
  2. 分类:
    • maxpooling下采样
    • averagepooling下采样
  3. 特点:
    • 没有训练参数
    • 改变w、h,不改变channel
    • 池化核大小 = 步长 -> 等比例缩小
相关推荐
진영_4 小时前
Transformer(一)---背景介绍及架构介绍
人工智能·深度学习·transformer
星楠_0014 小时前
logits和softmax分布
人工智能·python·深度学习
AI数据皮皮侠10 小时前
中国各省森林覆盖率等数据(2000-2023年)
大数据·人工智能·python·深度学习·机器学习
a man of sadness16 小时前
决策树算法基础:信息熵相关知识
决策树·机器学习·分类·信息熵·kl散度·交叉熵
蒋星熠16 小时前
TensorFlow与PyTorch深度对比分析:从基础原理到实战选择的完整指南
人工智能·pytorch·python·深度学习·ai·tensorflow·neo4j
老坛程序员18 小时前
开源项目Sherpa-onnx:全平台离线语音识别的轻量级高性能引擎
人工智能·深度学习·机器学习·语音识别
西西弗Sisyphus18 小时前
YOLO 11 图像分类推理 Web 服务
yolo·分类·yolo 11
无风听海18 小时前
神经网络之Softmax激活函数求导过程
人工智能·深度学习·神经网络
、、、、南山小雨、、、、19 小时前
Pytorch强化学习demo
pytorch·深度学习·机器学习·强化学习
云澈ovo20 小时前
稀疏化神经网络:降低AI推理延迟的量化压缩技术
人工智能·深度学习·神经网络