Matlab实现LSTM-SVM回归预测,作者:机器学习之心

Matlab实现LSTM-SVM回归预测,作者:机器学习之心

目录

效果一览


基本介绍

代码主要功能

该代码实现了一个LSTM-SVM回归预测模型,核心流程如下:

数据预处理:导入数据、划分训练/测试集、归一化处理

LSTM特征提取:构建LSTM网络提取特征

SVM回归预测:使用提取的特征训练SVM模型

结果评估:计算RMSE、R²、MAE等7种评估指标

可视化分析:绘制预测结果对比图、误差分析图和拟合曲线

关键参数设定

算法步骤

数据准备阶段、LSTM特征提取、SVM建模预测、评估指标计算

可视化输出

预测值 vs 真实值对比曲线

相对误差分布条形图

预测-真实值散点拟合图

运行环境要求

MATLAB版本:2023b或更高(必需)

依赖工具箱:

Deep Learning Toolbox (LSTM训练)

Statistics and Machine Learning Toolbox (数据预处理)

LIB-SVM第三方库 (SVM实现)

硬件要求:

支持自动GPU加速 (executionEnvironment="auto")

显存≥4GB(推荐用于LSTM训练)

典型应用场景

复杂特征提取:

当原始特征与目标变量存在非线性关系时

需要自动特征工程的场景(LSTM替代手动特征工程)

小样本预测:

SVM在小样本数据集上表现优异

LSTM特征提取可提升模型泛化能力

程序设计

完整源码私信回复Matlab实现LSTM-SVM回归预测,作者:机器学习之心

clike 复制代码
.rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }

%% 初始化
clear
close all
clc
addpath(genpath(pwd))
disp('此程序务必用2023b及其以上版本的MATLAB!否则会报错!')


%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%  格式转换
for i = 1 : M 
    vp_train{i, 1} = p_train(:, i);
end

for i = 1 : N 
    vp_test{i, 1} = p_test(:, i);
end


%% 构建的LSTM模型


   

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129215161 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
pen-ai29 分钟前
【统计方法】蒙特卡洛
人工智能·机器学习·概率论
摘取一颗天上星️43 分钟前
大模型微调技术全景图:从全量更新到参数高效适配
人工智能·深度学习·机器学习
AWS官方合作商4 小时前
Amazon Augmented AI:人类智慧与AI协作,破解机器学习审核难题
人工智能·机器学习·aws
MPCTHU7 小时前
机器学习的数学基础:假设检验
数学·机器学习
我爱C编程8 小时前
基于QPSK调制解调+Polar编译码(SCL译码)的matlab性能仿真,并对比BPSK
matlab·qpsk·polar编译码·scl译码
黑鹿02210 小时前
机器学习基础(三) 逻辑回归
人工智能·机器学习·逻辑回归
天天代码码天天11 小时前
C# Onnx 动漫人物头部检测
人工智能·深度学习·神经网络·opencv·目标检测·机器学习·计算机视觉
vlln12 小时前
【论文解读】ReAct:从思考脱离行动, 到行动反馈思考
人工智能·深度学习·机器学习
lqj_本人12 小时前
鸿蒙OS&UniApp结合机器学习打造智能图像分类应用:HarmonyOS实践指南#三方框架 #Uniapp
机器学习·uni-app·harmonyos
土豆杨62612 小时前
隐藏层-机器学习
python·机器学习