Matlab实现LSTM-SVM回归预测,作者:机器学习之心

Matlab实现LSTM-SVM回归预测,作者:机器学习之心

目录

效果一览


基本介绍

代码主要功能

该代码实现了一个LSTM-SVM回归预测模型,核心流程如下:

数据预处理:导入数据、划分训练/测试集、归一化处理

LSTM特征提取:构建LSTM网络提取特征

SVM回归预测:使用提取的特征训练SVM模型

结果评估:计算RMSE、R²、MAE等7种评估指标

可视化分析:绘制预测结果对比图、误差分析图和拟合曲线

关键参数设定

算法步骤

数据准备阶段、LSTM特征提取、SVM建模预测、评估指标计算

可视化输出

预测值 vs 真实值对比曲线

相对误差分布条形图

预测-真实值散点拟合图

运行环境要求

MATLAB版本:2023b或更高(必需)

依赖工具箱:

Deep Learning Toolbox (LSTM训练)

Statistics and Machine Learning Toolbox (数据预处理)

LIB-SVM第三方库 (SVM实现)

硬件要求:

支持自动GPU加速 (executionEnvironment="auto")

显存≥4GB(推荐用于LSTM训练)

典型应用场景

复杂特征提取:

当原始特征与目标变量存在非线性关系时

需要自动特征工程的场景(LSTM替代手动特征工程)

小样本预测:

SVM在小样本数据集上表现优异

LSTM特征提取可提升模型泛化能力

程序设计

完整源码私信回复Matlab实现LSTM-SVM回归预测,作者:机器学习之心

clike 复制代码
.rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }

%% 初始化
clear
close all
clc
addpath(genpath(pwd))
disp('此程序务必用2023b及其以上版本的MATLAB!否则会报错!')


%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%  格式转换
for i = 1 : M 
    vp_train{i, 1} = p_train(:, i);
end

for i = 1 : N 
    vp_test{i, 1} = p_test(:, i);
end


%% 构建的LSTM模型


   

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129215161 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
NeoFii20 分钟前
Day 24:元组与os模块
python·机器学习
王上上36 分钟前
【论文阅读53】-CNN-LSTM-滑坡风险随时间变化研究
论文阅读·cnn·lstm
墨尘游子2 小时前
基于 LSTM 与 SVM 融合的时间序列预测模型:理论框架与协同机制—实践算法(1)
人工智能·支持向量机·lstm
神经星星2 小时前
估值准确率超99%!基于YOLOv11的陶瓷分类智能框架融合视觉建模与经济分析,实现文物分类及价值估测
人工智能·机器学习·开源
007tg2 小时前
007TG洞察:GPT-5前瞻与AI时代竞争力构建:技术挑战与落地路径
人工智能·gpt·机器学习
Blossom.1183 小时前
基于深度学习的图像分类:使用ShuffleNet实现高效分类
人工智能·python·深度学习·目标检测·机器学习·分类·数据挖掘
冰封剑心3 小时前
Docker配置文件daemon.json使用及说明
人工智能·机器学习·计算机视觉
AI4Sci.4 小时前
在云服务器上基于lora微调Qwen2.5-VL-7b-Instruct模型(下)
人工智能·算法·机器学习·大模型·lora微调·大模型本地部署·qwen2.5-vl-7b
笔触狂放5 小时前
【机器学习】第八章 模型评估及改进
人工智能·深度学习·机器学习
xiao5kou4chang6kai45 小时前
MATLAB近红外光谱分析技术及实践技术
支持向量机·matlab·近红外光谱·光谱分析