torch.randn vs torch.rand

1 分布类型:

randn:生成标准正态分布(均值 0,标准差 1)

rand:生成 [0, 1) 区间的均匀分布

2 数值范围:

randn:可能产生负数(范围 (-∞, +∞))

rand:只产生非负数(范围 [0, 1))

3 典型应用:

python 复制代码
# 生成正态分布数据(适合模拟噪声/自然现象)
noise = torch.randn(100)  # 包含正负数

# 生成均匀分布数据(适合概率/颜色通道值等)
probabilities = torch.rand(100)  # 全在 0-1 之间
相关推荐
望获linux20 小时前
【实时Linux实战系列】Linux 内核的实时组调度(Real-Time Group Scheduling)
java·linux·服务器·前端·数据库·人工智能·深度学习
程序员大雄学编程21 小时前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
Dev7z21 小时前
河南特色农产品识别系统:让AI守护“中原味道”
人工智能
万俟淋曦21 小时前
【论文速递】2025年第28周(Jul-06-12)(Robotics/Embodied AI/LLM)
人工智能·ai·机器人·大模型·论文·robotics·具身智能
我是李武涯21 小时前
PyTorch DataLoader 高级用法
人工智能·pytorch·python
每月一号准时摆烂21 小时前
PS基本教学(三)——像素与分辨率的关系以及图片的格式
人工智能·计算机视觉
song1502653729821 小时前
全自动视觉检测设备
人工智能·计算机视觉·视觉检测
2501_9065196721 小时前
大语言模型的幻觉问题:机理、评估与抑制路径探析
人工智能
ZKNOW甄知科技21 小时前
客户案例 | 派克新材x甄知科技,构建全场景智能IT运维体系
大数据·运维·人工智能·科技·低代码·微服务·制造
视觉语言导航1 天前
CoRL-2025 | SocialNav-SUB:用于社交机器人导航场景理解的视觉语言模型基准测试
人工智能·机器人·具身智能