Kaggle-Predicting Optimal Fertilizers-(多分类+xgboost+同一特征值多样性)

Predicting Optimal Fertilizers

题意:

给出土壤的特性,预测出3种最佳的肥料

数据处理:

1.有数字型和类别型,类别不能随意换成数字,独热编码。cat可以直接处理category类型。

2.构造一些相关土壤特性特征

3.由于label是category类型,但是xgb不可以处理category类型,因此需要先编码,最后求出结果之后再解码。

建立模型:

1.catboost交叉验证、xgboost交叉验证

代码:
python 复制代码
import os
import sys
import warnings
import numpy as np
import pandas as pd
import seaborn
from catboost import CatBoostRegressor, CatBoostClassifier
from lightgbm import LGBMRegressor
from matplotlib import pyplot as plt
import lightgbm
from mlxtend.regressor import StackingCVRegressor
from sklearn import clone
from sklearn.ensemble import VotingRegressor, StackingClassifier, StackingRegressor
from sklearn.linear_model import Lasso, LogisticRegression, RidgeCV
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, make_scorer, mean_squared_log_error
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, StratifiedKFold
from sklearn.preprocessing import StandardScaler, LabelEncoder, PolynomialFeatures
from xgboost import XGBRegressor, XGBClassifier
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import KFold
from sklearn.linear_model import Ridge
from catboost import Pool, CatBoostClassifier


def init():
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # 仅输出错误日志
    warnings.simplefilter('ignore')  # 忽略警告日志
    pd.set_option('display.width', 1000)
    pd.set_option('display.max_colwidth', 1000)
    pd.set_option("display.max_rows", 1000)
    pd.set_option("display.max_columns", 1000)


def show_dataframe(df):
    print("查看特征值和特征值类型\n" + str(df.dtypes) + "\n" + "-" * 100)
    print("查看前10行信息\n" + str(df.head()) + "\n" + "-" * 100)
    print("查看每个特征值的各种数据统计信息\n" + str(df.describe()) + "\n" + "-" * 100)
    print("输出重复行的个数\n" + str(df.duplicated().sum()) + "\n" + "-" * 100)
    print("查看每列的缺失值个数\n" + str(df.isnull().sum()) + "\n" + "-" * 100)
    print("查看缺失值的具体信息\n" + str(df.info()) + "\n" + "-" * 100)
    # print("输出X所有值出现的是什么,还有对应出现的次数\n" + str(df['X'].value_counts()) + "\n" + "-" * 100)


def show_relation(data, colx, coly):
    if data[colx].dtype == 'object' or data[colx].dtype == 'category' or len(data[colx].unique()) < 20:
        seaborn.boxplot(x=colx, y=coly, data=data)
    else:
        plt.scatter(data[colx], data[coly])
    plt.xlabel(colx)
    plt.ylabel(coly)
    plt.show()


def mapk(actual, predicted, k=3):
    def apk(a, p, k):
        score = 0.0
        for i in range(min(k, len(p))):
            if p[i] == a:
                score += 1.0 / (i + 1)
                break
        return score

    return np.mean([apk(a, p, k) for a, p in zip(actual, predicted)])


if __name__ == '__main__':
    init()

    df_train = pd.read_csv('/kaggle/input/playground-series-s5e6/train.csv')
    df_test = pd.read_csv('/kaggle/input/playground-series-s5e6/test.csv')
    df_train_additional = pd.read_csv('/kaggle/input/fertilizer-prediction/Fertilizer Prediction.csv')
    pd.concat([df_train, df_train_additional], ignore_index=True)

    print("Start Feature enggering" + "-" * 70 + "\n")
    df_all = pd.concat([df_train.drop(['id', 'Fertilizer Name'], axis=1), df_test.drop(['id'], axis=1)], axis=0)

    df_all['Temp_Humidity_Interaction'] = df_all['Temparature'] * df_all['Humidity']
    df_all['N_P_Ratio'] = df_all['Nitrogen'] / (df_all['Phosphorous'].replace(0, 1e-6))
    df_all['K_P_Ratio'] = df_all['Potassium'] / (df_all['Phosphorous'].replace(0, 1e-6))
    df_all['Soil_Crop_Combination'] = df_all['Soil Type'].astype(str) + '_' + df_all['Crop Type'].astype(str)

    df_all['P_to_K'] = df_all['Phosphorous'] / (df_all['Potassium'] + 1e-5)
    df_all['Total_NPK'] = df_all['Nitrogen'] + df_all['Phosphorous'] + df_all['Potassium']
    df_all['Climate_Index'] = (df_all['Temparature'] + df_all['Humidity']) / 2
    df_all['Water_Stress'] = df_all['Humidity'] - df_all['Moisture']

    original_numerical_cols = ['Temparature', 'Humidity', 'Moisture', 'Nitrogen', 'Potassium', 'Phosphorous']
    for col in original_numerical_cols:
        df_all[f'{col}_Binned'] = df_all[col].astype(str)

    numerical_features = ['Temparature', 'Humidity', 'Moisture', 'Nitrogen', 'Potassium', 'Phosphorous',
                          'Temp_Humidity_Interaction', 'N_P_Ratio', 'K_P_Ratio']
    categorical_features = ['Soil Type', 'Crop Type', 'Soil_Crop_Combination']
    categorical_features.extend([f'{col}_Binned' for col in original_numerical_cols])

    poly_features_to_transform = original_numerical_cols
    poly = PolynomialFeatures(degree=2, include_bias=False)
    df_all_transformers = poly.fit_transform(df_all[poly_features_to_transform])

    poly_feature_names = poly.get_feature_names_out(poly_features_to_transform)
    df_all = df_all.drop(columns=poly_features_to_transform)
    df_all = pd.concat([df_all, pd.DataFrame(df_all_transformers, columns=poly_feature_names,index=df_all.index)], axis=1)

    numerical_features = df_all.select_dtypes(include=['int64', 'float64']).columns.tolist()
    categorical_features = df_all.select_dtypes(exclude=['int64', 'float64']).columns.tolist()

    all_features_ordered = numerical_features + categorical_features
    df_all = df_all[all_features_ordered]

    all_categories_union = {}
    for col in categorical_features:
        if col in df_all.columns:
            all_categories_union[col] = pd.concat([
                df_all[col],
            ], axis=0).astype(str).unique()
        else:
            print(f"Warning: Categorical column '{col}' not found after feature engineering. Skipping conversion.")

    for col in categorical_features:
        if col in df_all.columns:
            df_all[col] = pd.Categorical(df_all[col], categories=all_categories_union[col])

    le = LabelEncoder()
    X_train = df_all[:df_train.shape[0]]
    Y_train = df_train['Fertilizer Name']
    Y_train = le.fit_transform(Y_train)
    X_test = df_all[df_train.shape[0]:]

    print("Training model" + "-" * 70 + "\n")
    model_xgb = XGBClassifier(
        max_depth=8,  # 降低树深度
        colsample_bytree=0.5,  # 控制特征采样比例
        subsample=0.7,  # 控制数据采样比例
        n_estimators=3000,  # 减少迭代轮数
        learning_rate=0.03,  # 降低学习率
        gamma=0.5,  # 增加分裂难度
        max_delta_step=2,  # 限制权重更新步长
        reg_alpha=5,  # 增强L1正则化
        reg_lambda=3,  # 增强L2正则化
        early_stopping_rounds=100,  # 更早停止训练
        objective='multi:softprob',
        random_state=13,
        enable_categorical=True,
        tree_method='hist',
        device='cuda'
    )


    kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
    pred_xgb = np.zeros((X_test.shape[0], len(le.classes_)))

    for fold, (train_idx, val_idx) in enumerate(kfold.split(X_train, Y_train)):
        print(f"\nFold {fold + 1}/{kfold.n_splits}")

        x_fold_train, x_fold_val = X_train.iloc[train_idx], X_train.iloc[val_idx]
        y_fold_train, y_fold_val = Y_train[train_idx], Y_train[val_idx]

        model_xgb.fit(
            x_fold_train, y_fold_train,
            eval_set = [(x_fold_val, y_fold_val)],
            verbose = 100,
        )

        pred_xgb += model_xgb.predict_proba(X_test) / kfold.n_splits

    pred_top3_xgb = np.argsort(pred_xgb, axis=1)[:, -3:][:, ::-1]
    top3_label = []
    for row in pred_top3_xgb:
        converted = [le.classes_[i] for i in row]
        top3_label.append(converted)

    submission = pd.DataFrame({
        'id': df_test['id'],
        'Fertilizer Name': [' '.join(preds) for preds in top3_label],
    })
    submission.to_csv('/kaggle/working/submission.csv', index=False)
#xgb0.35642
相关推荐
Jamence7 分钟前
多模态大语言模型arxiv论文略读(113)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
haf-Lydia12 分钟前
金融科技的数字底座
人工智能·科技·金融
shengjk115 分钟前
多智能体大语言模型系统频频翻车?三大失败根源与解决方案全解析
人工智能
北极的树17 分钟前
谁说AI只会模仿,从Google AlphaEvolve项目看算法的自主创新
人工智能·算法·gemini
安思派Anspire21 分钟前
用 LangGraph 构建第一个 AI 智能体完全指南(一)
人工智能
广州正荣22 分钟前
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
人工智能·爬虫·科技
加油搞钱加油搞钱24 分钟前
鹰盾加密器基于AI的视频个性化压缩技术深度解析:从智能分析到无损压缩实践
人工智能·音视频·视频加密·鹰盾加密·鹰盾播放器
Baihai_IDP27 分钟前
OCR 识别质量如何影响 RAG 系统的性能?有何解决办法?
人工智能·llm·aigc
新智元28 分钟前
20 人团队提前实现 DeepSeek 构想,AI 算力变天?直击大模型算力成本痛点
人工智能·openai
硬核隔壁老王34 分钟前
从零开始搭建RAG系统系列(十):RAG系统性能优化技巧-生成模块优化 (Optimizing Generator)
人工智能·程序员·llm