Kaggle-Predicting Optimal Fertilizers-(多分类+xgboost+同一特征值多样性)

Predicting Optimal Fertilizers

题意:

给出土壤的特性,预测出3种最佳的肥料

数据处理:

1.有数字型和类别型,类别不能随意换成数字,独热编码。cat可以直接处理category类型。

2.构造一些相关土壤特性特征

3.由于label是category类型,但是xgb不可以处理category类型,因此需要先编码,最后求出结果之后再解码。

建立模型:

1.catboost交叉验证、xgboost交叉验证

代码:
python 复制代码
import os
import sys
import warnings
import numpy as np
import pandas as pd
import seaborn
from catboost import CatBoostRegressor, CatBoostClassifier
from lightgbm import LGBMRegressor
from matplotlib import pyplot as plt
import lightgbm
from mlxtend.regressor import StackingCVRegressor
from sklearn import clone
from sklearn.ensemble import VotingRegressor, StackingClassifier, StackingRegressor
from sklearn.linear_model import Lasso, LogisticRegression, RidgeCV
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, make_scorer, mean_squared_log_error
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, StratifiedKFold
from sklearn.preprocessing import StandardScaler, LabelEncoder, PolynomialFeatures
from xgboost import XGBRegressor, XGBClassifier
from sklearn.preprocessing import RobustScaler
from sklearn.model_selection import KFold
from sklearn.linear_model import Ridge
from catboost import Pool, CatBoostClassifier


def init():
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # 仅输出错误日志
    warnings.simplefilter('ignore')  # 忽略警告日志
    pd.set_option('display.width', 1000)
    pd.set_option('display.max_colwidth', 1000)
    pd.set_option("display.max_rows", 1000)
    pd.set_option("display.max_columns", 1000)


def show_dataframe(df):
    print("查看特征值和特征值类型\n" + str(df.dtypes) + "\n" + "-" * 100)
    print("查看前10行信息\n" + str(df.head()) + "\n" + "-" * 100)
    print("查看每个特征值的各种数据统计信息\n" + str(df.describe()) + "\n" + "-" * 100)
    print("输出重复行的个数\n" + str(df.duplicated().sum()) + "\n" + "-" * 100)
    print("查看每列的缺失值个数\n" + str(df.isnull().sum()) + "\n" + "-" * 100)
    print("查看缺失值的具体信息\n" + str(df.info()) + "\n" + "-" * 100)
    # print("输出X所有值出现的是什么,还有对应出现的次数\n" + str(df['X'].value_counts()) + "\n" + "-" * 100)


def show_relation(data, colx, coly):
    if data[colx].dtype == 'object' or data[colx].dtype == 'category' or len(data[colx].unique()) < 20:
        seaborn.boxplot(x=colx, y=coly, data=data)
    else:
        plt.scatter(data[colx], data[coly])
    plt.xlabel(colx)
    plt.ylabel(coly)
    plt.show()


def mapk(actual, predicted, k=3):
    def apk(a, p, k):
        score = 0.0
        for i in range(min(k, len(p))):
            if p[i] == a:
                score += 1.0 / (i + 1)
                break
        return score

    return np.mean([apk(a, p, k) for a, p in zip(actual, predicted)])


if __name__ == '__main__':
    init()

    df_train = pd.read_csv('/kaggle/input/playground-series-s5e6/train.csv')
    df_test = pd.read_csv('/kaggle/input/playground-series-s5e6/test.csv')
    df_train_additional = pd.read_csv('/kaggle/input/fertilizer-prediction/Fertilizer Prediction.csv')
    pd.concat([df_train, df_train_additional], ignore_index=True)

    print("Start Feature enggering" + "-" * 70 + "\n")
    df_all = pd.concat([df_train.drop(['id', 'Fertilizer Name'], axis=1), df_test.drop(['id'], axis=1)], axis=0)

    df_all['Temp_Humidity_Interaction'] = df_all['Temparature'] * df_all['Humidity']
    df_all['N_P_Ratio'] = df_all['Nitrogen'] / (df_all['Phosphorous'].replace(0, 1e-6))
    df_all['K_P_Ratio'] = df_all['Potassium'] / (df_all['Phosphorous'].replace(0, 1e-6))
    df_all['Soil_Crop_Combination'] = df_all['Soil Type'].astype(str) + '_' + df_all['Crop Type'].astype(str)

    df_all['P_to_K'] = df_all['Phosphorous'] / (df_all['Potassium'] + 1e-5)
    df_all['Total_NPK'] = df_all['Nitrogen'] + df_all['Phosphorous'] + df_all['Potassium']
    df_all['Climate_Index'] = (df_all['Temparature'] + df_all['Humidity']) / 2
    df_all['Water_Stress'] = df_all['Humidity'] - df_all['Moisture']

    original_numerical_cols = ['Temparature', 'Humidity', 'Moisture', 'Nitrogen', 'Potassium', 'Phosphorous']
    for col in original_numerical_cols:
        df_all[f'{col}_Binned'] = df_all[col].astype(str)

    numerical_features = ['Temparature', 'Humidity', 'Moisture', 'Nitrogen', 'Potassium', 'Phosphorous',
                          'Temp_Humidity_Interaction', 'N_P_Ratio', 'K_P_Ratio']
    categorical_features = ['Soil Type', 'Crop Type', 'Soil_Crop_Combination']
    categorical_features.extend([f'{col}_Binned' for col in original_numerical_cols])

    poly_features_to_transform = original_numerical_cols
    poly = PolynomialFeatures(degree=2, include_bias=False)
    df_all_transformers = poly.fit_transform(df_all[poly_features_to_transform])

    poly_feature_names = poly.get_feature_names_out(poly_features_to_transform)
    df_all = df_all.drop(columns=poly_features_to_transform)
    df_all = pd.concat([df_all, pd.DataFrame(df_all_transformers, columns=poly_feature_names,index=df_all.index)], axis=1)

    numerical_features = df_all.select_dtypes(include=['int64', 'float64']).columns.tolist()
    categorical_features = df_all.select_dtypes(exclude=['int64', 'float64']).columns.tolist()

    all_features_ordered = numerical_features + categorical_features
    df_all = df_all[all_features_ordered]

    all_categories_union = {}
    for col in categorical_features:
        if col in df_all.columns:
            all_categories_union[col] = pd.concat([
                df_all[col],
            ], axis=0).astype(str).unique()
        else:
            print(f"Warning: Categorical column '{col}' not found after feature engineering. Skipping conversion.")

    for col in categorical_features:
        if col in df_all.columns:
            df_all[col] = pd.Categorical(df_all[col], categories=all_categories_union[col])

    le = LabelEncoder()
    X_train = df_all[:df_train.shape[0]]
    Y_train = df_train['Fertilizer Name']
    Y_train = le.fit_transform(Y_train)
    X_test = df_all[df_train.shape[0]:]

    print("Training model" + "-" * 70 + "\n")
    model_xgb = XGBClassifier(
        max_depth=8,  # 降低树深度
        colsample_bytree=0.5,  # 控制特征采样比例
        subsample=0.7,  # 控制数据采样比例
        n_estimators=3000,  # 减少迭代轮数
        learning_rate=0.03,  # 降低学习率
        gamma=0.5,  # 增加分裂难度
        max_delta_step=2,  # 限制权重更新步长
        reg_alpha=5,  # 增强L1正则化
        reg_lambda=3,  # 增强L2正则化
        early_stopping_rounds=100,  # 更早停止训练
        objective='multi:softprob',
        random_state=13,
        enable_categorical=True,
        tree_method='hist',
        device='cuda'
    )


    kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
    pred_xgb = np.zeros((X_test.shape[0], len(le.classes_)))

    for fold, (train_idx, val_idx) in enumerate(kfold.split(X_train, Y_train)):
        print(f"\nFold {fold + 1}/{kfold.n_splits}")

        x_fold_train, x_fold_val = X_train.iloc[train_idx], X_train.iloc[val_idx]
        y_fold_train, y_fold_val = Y_train[train_idx], Y_train[val_idx]

        model_xgb.fit(
            x_fold_train, y_fold_train,
            eval_set = [(x_fold_val, y_fold_val)],
            verbose = 100,
        )

        pred_xgb += model_xgb.predict_proba(X_test) / kfold.n_splits

    pred_top3_xgb = np.argsort(pred_xgb, axis=1)[:, -3:][:, ::-1]
    top3_label = []
    for row in pred_top3_xgb:
        converted = [le.classes_[i] for i in row]
        top3_label.append(converted)

    submission = pd.DataFrame({
        'id': df_test['id'],
        'Fertilizer Name': [' '.join(preds) for preds in top3_label],
    })
    submission.to_csv('/kaggle/working/submission.csv', index=False)
#xgb0.35642
相关推荐
乾元8 分钟前
构建你的个人「网络 AI 实验室」——硬件、模拟器与数据集清单
运维·网络·人工智能·网络协议·架构
lkbhua莱克瓦2411 分钟前
机器学习的演进与深度学习的革命
人工智能·深度学习·机器学习
楚来客13 分钟前
AI基础概念之九:神经网络单层感知机的基本原理
人工智能·神经网络·cnn
北京耐用通信14 分钟前
耐达讯自动化 Profibus 总线光纤中继器:解决半导体设备通信难题,提升产线效率
网络·人工智能·物联网·自动化·信息与通信
大强同学15 分钟前
7个优质精选Claude Skills
人工智能
GISer_Jing21 分钟前
AI学习资源总结:免费开放,入门至深入,持续更新
人工智能·学习·设计模式·prompt·aigc
聊聊科技24 分钟前
音乐平台批量demo更新频繁,AI代唱demo软件助音乐人快速响应
人工智能
IT_陈寒24 分钟前
SpringBoot 3.2实战:5个性能优化技巧让你的应用提速50%
前端·人工智能·后端
Ydwlcloud24 分钟前
个人博客与内容站部署在AWS:2026年的理性选择与更优策略
大数据·服务器·人工智能·云计算·aws
AAD5558889930 分钟前
黄稻螟害虫检测基于Faster-RCNN_R50-Caffe-C4_MS-1x_COCO模型创新实现
人工智能·深度学习·caffe