Halcon案例(三):C#联合Halcon识别排线

  • 本案例分3部分
    1. 识别效果,分别显示识别前后识别后;
    2. 代码展示,分别是Halcon源码和Halcon转为C#的代码
    3. 代码解释(解释在源码中);
  • 原图如下:
  • 识别后图像如下:
  • Halcon代码:
cs 复制代码
*关闭已经打开的窗口
dev_close_window ()

*打开新窗口
dev_open_window (0, 0, 640, 480, 'black', WindowHandle)

for i := 1 to 2 by 1
    *打开一张图像     
    read_image (Image, 'cable' + i)
    
    *获取一个三通道图像里的每个通道的图像数据
    decompose3 (Image, Red, Green, Blue)
    
    *将RGB三通道数据转化为HSV色彩空间的三通道图像数据
    trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
    
    *对HSV图像中的饱和度通道进行阈值操作
    threshold (Saturation, HighSaturation, 100, 255)
    
    *获取上述阈值操作后区域中的色调通道图像数据
    reduce_domain (Hue, HighSaturation, HueHighSaturation)
    
    *对上述色调通道图像数据进行阈值处理
    threshold (HueHighSaturation, Yellow, 20, 50)
    
    *获取区域里连接的组件
    connection (Yellow, ConnectedRegions)
    
    *保留ConnectedRegions里的最大的区域
    select_shape_std (ConnectedRegions, SelectedRegions, 'max_area', 0)
    
    *对SelectedRegions进行闭运算操作
    closing_circle (SelectedRegions, Yellow, 3.5)
    
    *将Yellow区域里的图像剪切出来
    reduce_domain (Image, Yellow, ImageReduced)
    
    *显示图像
    dev_clear_window()
    
    dev_set_color ('white')
    
    dev_set_draw ('margin')
    
    *显示黄色的电线
    dev_display (Image)
    
    dev_display (Yellow)
    
    stop ()
endfor
  • C#代码 :
cs 复制代码
#region 识别排线中的黄色的线束
public void RecognizeLine(HTuple winId, string imagePath)
{
    // Local iconic variables 
    HObject ho_Image = null, ho_Red = null, ho_Green = null;
    HObject ho_Blue = null, ho_Hue = null, ho_Saturation = null, ho_Intensity = null;
    HObject ho_HighSaturation = null, ho_HueHighSaturation = null;
    HObject ho_Yellow = null, ho_ConnectedRegions = null, ho_SelectedRegions = null;
    HObject ho_ImageReduced = null;

    // Local control variables 

    HTuple hv_WindowHandle = new HTuple(), hv_i = new HTuple();
    // Initialize local and output iconic variables 
    HOperatorSet.GenEmptyObj(out ho_Image);
    HOperatorSet.GenEmptyObj(out ho_Red);
    HOperatorSet.GenEmptyObj(out ho_Green);
    HOperatorSet.GenEmptyObj(out ho_Blue);
    HOperatorSet.GenEmptyObj(out ho_Hue);
    HOperatorSet.GenEmptyObj(out ho_Saturation);
    HOperatorSet.GenEmptyObj(out ho_Intensity);
    HOperatorSet.GenEmptyObj(out ho_HighSaturation);
    HOperatorSet.GenEmptyObj(out ho_HueHighSaturation);
    HOperatorSet.GenEmptyObj(out ho_Yellow);
    HOperatorSet.GenEmptyObj(out ho_ConnectedRegions);
    HOperatorSet.GenEmptyObj(out ho_SelectedRegions);
    HOperatorSet.GenEmptyObj(out ho_ImageReduced);

    //关闭已经打开的窗口
    //if (HDevWindowStack.IsOpen())
    //{
    //    HOperatorSet.CloseWindow(HDevWindowStack.Pop());
    //}

    //打开新窗口
    //HOperatorSet.SetWindowAttr("background_color", "black");
    //HOperatorSet.OpenWindow(0, 0, 640, 480, 0, "visible", "", out hv_WindowHandle);
    //HDevWindowStack.Push(hv_WindowHandle);

    //for (hv_i = 1; (int)hv_i <= 2; hv_i = (int)hv_i + 1)
    {
        //打开一张图像
        //using (HDevDisposeHelper dh = new HDevDisposeHelper())
        //{
        //    ho_Image.Dispose();
        //    HOperatorSet.ReadImage(out ho_Image, "cable" + hv_i);
        //}
        HOperatorSet.ReadImage(out ho_Image, imagePath);

        //获取一个三通道图像里的每个通道的图像数据
        ho_Red.Dispose(); ho_Green.Dispose(); ho_Blue.Dispose();
        HOperatorSet.Decompose3(ho_Image, out ho_Red, out ho_Green, out ho_Blue);

        //将RGB三通道数据转化为HSV色彩空间的三通道图像数据
        ho_Hue.Dispose(); ho_Saturation.Dispose(); ho_Intensity.Dispose();
        HOperatorSet.TransFromRgb(ho_Red, ho_Green, ho_Blue, out ho_Hue, out ho_Saturation,
            out ho_Intensity, "hsv");

        //对HSV图像中的饱和度通道进行阈值操作
        ho_HighSaturation.Dispose();
        HOperatorSet.Threshold(ho_Saturation, out ho_HighSaturation, 100, 255);

        //获取上述阈值操作后区域中的色调通道图像数据
        ho_HueHighSaturation.Dispose();
        HOperatorSet.ReduceDomain(ho_Hue, ho_HighSaturation, out ho_HueHighSaturation
            );

        //对上述色调通道图像数据进行阈值处理
        ho_Yellow.Dispose();
        HOperatorSet.Threshold(ho_HueHighSaturation, out ho_Yellow, 20, 50);

        //获取区域里连接的组件
        ho_ConnectedRegions.Dispose();
        HOperatorSet.Connection(ho_Yellow, out ho_ConnectedRegions);

        //保留ConnectedRegions里的最大的区域
        ho_SelectedRegions.Dispose();
        HOperatorSet.SelectShapeStd(ho_ConnectedRegions, out ho_SelectedRegions, "max_area",
            0);

        //对SelectedRegions进行闭运算操作
        ho_Yellow.Dispose();
        HOperatorSet.ClosingCircle(ho_SelectedRegions, out ho_Yellow, 3.5);

        //将Yellow区域里的图像剪切出来
        ho_ImageReduced.Dispose();
        HOperatorSet.ReduceDomain(ho_Image, ho_Yellow, out ho_ImageReduced);

        //显示图像
        //if (HDevWindowStack.IsOpen())
        {
            HOperatorSet.ClearWindow(winId);
        }

        //if (HDevWindowStack.IsOpen())
        {
            HOperatorSet.SetColor(winId, "white");
        }

        //if (HDevWindowStack.IsOpen())
        {
            HOperatorSet.SetDraw(winId, "margin");
        }

        //显示黄色的电线
        //if (HDevWindowStack.IsOpen())
        {
            HOperatorSet.DispObj(ho_Image, winId);
        }

        //if (HDevWindowStack.IsOpen())
        {
            HOperatorSet.DispObj(ho_Yellow, winId);
        }

        // stop(...); only in hdevelop
    }
    ho_Image.Dispose();
    ho_Red.Dispose();
    ho_Green.Dispose();
    ho_Blue.Dispose();
    ho_Hue.Dispose();
    ho_Saturation.Dispose();
    ho_Intensity.Dispose();
    ho_HighSaturation.Dispose();
    ho_HueHighSaturation.Dispose();
    ho_Yellow.Dispose();
    ho_ConnectedRegions.Dispose();
    ho_SelectedRegions.Dispose();
    ho_ImageReduced.Dispose();

    hv_WindowHandle.Dispose();
    hv_i.Dispose();

}
#endregion
相关推荐
那雨倾城18 小时前
PiscCode轨迹跟踪Mediapipe + OpenCV进阶:速度估算
图像处理·人工智能·python·opencv·计算机视觉
FutureUniant18 小时前
GitHub每日最火火火项目(9.5)
人工智能·microsoft·计算机视觉·ai·github
豆浩宇19 小时前
学习PaddlePaddle--环境配置-Windows 11 + RTX 4060
人工智能·windows·深度学习·学习·目标检测·计算机视觉·paddlepaddle
almighty2719 小时前
C# 阿里云 OSS 图片上传步骤及浏览器查看方法
c#·图片上传·c# 阿里云 oss·阿里云 oss
网安INF1 天前
【论文阅读】-《THE JPEG STILL PICTURE COMPRESSION STANDARD》
论文阅读·计算机视觉
格林威1 天前
Linux使用-Linux系统管理
linux·运维·服务器·深度学习·ubuntu·计算机视觉
山烛1 天前
OpenCV 模板匹配
人工智能·python·opencv·计算机视觉·目标跟踪·模板匹配
Python大数据分析@1 天前
Python 语言有什么奇技淫巧吗?
开发语言·python·c#
Envyᥫᩣ1 天前
C#中的设计模式:构建更加优雅的代码
开发语言·c#
豆浩宇1 天前
学习PaddlePaddle--环境配置-PyCharm + Conda
人工智能·深度学习·学习·目标检测·计算机视觉·pycharm·paddlepaddle