【论文笔记】【强化微调】TinyLLaVA-Video-R1:小参数模型也能视频推理

[2504.09641] TinyLLaVA-Video-R1: Towards Smaller LMMs for Video Reasoning

1. 引述

继之前的一篇 Video-R1 的工作,一篇新的关于视频推理的工作很快就上传到 Arxiv 上 "占坑" 了,这个工作是关于使用小参数(3B)的 LLM 进行视频推理。

之前那篇 Video-R1 的工作:【论文笔记】【强化微调】T-GRPO:对视频数据进行强化微调-CSDN博客

为什么说是 "占坑" 呢?这篇论文采用 GRPO 作为微调方法,并未说明为什么不采用 T-GRPO,而只是在其第 5 节 Conclusion and Future Work 提了一句当前微调方法有局限,未来慢慢改进。

其原文如下:

Currently, TinyLLaVA-Video-R1 employs the GRPO algorithm for training. However, this approach exhibits notable limitations. To enhance its effectiveness in video reasoning tasks, we plan to refine the algorithm by addressing the key challenges observed in our experiment.

纵观整篇论文,其核心目的是探索小模型的推理能力,而得到的结果是这样的小模型也能很好推理,并且能在强化微调后能比肩 7B 模型。下图就是 Qwen-7B 和强化微调后的 Qwen-3B 的对比实验:

有这篇论文作为依据,后续的研究就可以采用 3B 小模型,也不吃资源算力了。

2. 奖励设置

这篇论文是微调小参数 LLM,用的算法是传统 GRPO,因此方法核心点就在于奖励的设计上了。论文的奖励设计有三点:

  • 格式奖励:格式是否正确
  • 思考奖励:鼓励正确的长思考
  • 准确奖励:回答问题正确给奖励

首先是格式奖励,论文要求 LLM 输出结果得有思考过程 <think> 和输出答案 <answer>,并且每次输出只能有一对 <think></think> 和一对 <answer></answer>,格式正确之后给予 的奖励。

然后是思考奖励,论文鼓励 LLM 进行长文本的思考,<think> 的长度 越长,则奖励越多,最大为 ,但是存在一个上限 ,这是为了防止 LLM 无脑堆文本。思考奖励呈线性,写成公式如下:

论文定义格式奖励包含了思考奖励,也就是说格式奖励的公式如下:

最后是正确性奖励,回答正确给予 的得分,答错不给分。而正确答案的得分 和格式最大得分 是一致的,也就是说 ,这是为了让答案得分和格式得分具有相同的权重。公式如下:

最终的模型奖励如下:

也就是说,当格式且答案正确时,得分是正确性奖励 和格式奖励 的总和;当答案错误时,你的思考过程被试做全错,此时给予惩罚 ,如果你的 <think> 文本越长,惩罚越重;当格式都错误时,给予最大惩罚。

相关推荐
番茄大王sc1 天前
2026年科研AI工具深度测评:文献调研与综述生成领域
论文阅读·人工智能·学习方法·论文笔记
码界奇点1 天前
基于Gin与GORM的若依后台管理系统设计与实现
论文阅读·go·毕业设计·gin·源代码管理
森诺Alyson1 天前
前沿技术借鉴研讨-2026.1.29(时间序列预测)
论文阅读·人工智能·经验分享·深度学习·论文笔记
有Li2 天前
多视图深度学习乳腺X线摄影分类技术:图和Transformer架构的探究/文献速递-基于人工智能的医学影像技术
论文阅读·深度学习·文献·医学生
数说星榆1812 天前
前后端分离开发流程-泳道图设计与应用
论文阅读·职场和发展·毕业设计·流程图·职场发展·论文笔记·毕设
数说星榆1812 天前
项目管理流程图-泳道图模板免费下载
论文阅读·毕业设计·流程图·论文笔记·毕设
程途拾光1582 天前
产品功能验收泳道图-流程图模板下载
论文阅读·职场和发展·毕业设计·流程图·课程设计·论文笔记·毕设
檐下翻书1732 天前
招聘SOP流程图-泳道图模板详细教程
论文阅读·毕业设计·流程图·图论·论文笔记·毕设
m0_650108243 天前
UniScene:面向自动驾驶的统一占用率中心驾驶场景生成
论文阅读·自动驾驶·uniscene·训练数据生成·语义占用率生成·多视角视频生成·激光雷达点云生成
蓝田生玉1233 天前
Deepstack论文阅读笔记
论文阅读·笔记