【论文笔记】【强化微调】TinyLLaVA-Video-R1:小参数模型也能视频推理

[2504.09641] TinyLLaVA-Video-R1: Towards Smaller LMMs for Video Reasoning

1. 引述

继之前的一篇 Video-R1 的工作,一篇新的关于视频推理的工作很快就上传到 Arxiv 上 "占坑" 了,这个工作是关于使用小参数(3B)的 LLM 进行视频推理。

之前那篇 Video-R1 的工作:【论文笔记】【强化微调】T-GRPO:对视频数据进行强化微调-CSDN博客

为什么说是 "占坑" 呢?这篇论文采用 GRPO 作为微调方法,并未说明为什么不采用 T-GRPO,而只是在其第 5 节 Conclusion and Future Work 提了一句当前微调方法有局限,未来慢慢改进。

其原文如下:

Currently, TinyLLaVA-Video-R1 employs the GRPO algorithm for training. However, this approach exhibits notable limitations. To enhance its effectiveness in video reasoning tasks, we plan to refine the algorithm by addressing the key challenges observed in our experiment.

纵观整篇论文,其核心目的是探索小模型的推理能力,而得到的结果是这样的小模型也能很好推理,并且能在强化微调后能比肩 7B 模型。下图就是 Qwen-7B 和强化微调后的 Qwen-3B 的对比实验:

有这篇论文作为依据,后续的研究就可以采用 3B 小模型,也不吃资源算力了。

2. 奖励设置

这篇论文是微调小参数 LLM,用的算法是传统 GRPO,因此方法核心点就在于奖励的设计上了。论文的奖励设计有三点:

  • 格式奖励:格式是否正确
  • 思考奖励:鼓励正确的长思考
  • 准确奖励:回答问题正确给奖励

首先是格式奖励,论文要求 LLM 输出结果得有思考过程 <think> 和输出答案 <answer>,并且每次输出只能有一对 <think></think> 和一对 <answer></answer>,格式正确之后给予 的奖励。

然后是思考奖励,论文鼓励 LLM 进行长文本的思考,<think> 的长度 越长,则奖励越多,最大为 ,但是存在一个上限 ,这是为了防止 LLM 无脑堆文本。思考奖励呈线性,写成公式如下:

论文定义格式奖励包含了思考奖励,也就是说格式奖励的公式如下:

最后是正确性奖励,回答正确给予 的得分,答错不给分。而正确答案的得分 和格式最大得分 是一致的,也就是说 ,这是为了让答案得分和格式得分具有相同的权重。公式如下:

最终的模型奖励如下:

也就是说,当格式且答案正确时,得分是正确性奖励 和格式奖励 的总和;当答案错误时,你的思考过程被试做全错,此时给予惩罚 ,如果你的 <think> 文本越长,惩罚越重;当格式都错误时,给予最大惩罚。

相关推荐
berling0012 小时前
【论文阅读 | IF 2025 | COMO:用于多模态目标检测的跨 Mamba 交互与偏移引导融合】
论文阅读·人工智能·目标检测
张较瘦_20 小时前
[论文阅读] 人工智能 + 软件工程 | 开源软件中的GenAI自白:开发者如何用、项目如何管、代码质量受何影响?
论文阅读·人工智能·软件工程
dundunmm1 天前
【论文阅读】A Survey on Knowledge-Oriented Retrieval-Augmented Generation(4)
论文阅读·大模型·llm·rag·检索增强生成·评估标准
CV-杨帆2 天前
论文阅读:arxiv 2025 A Survey on Data Contamination for Large Language Models
论文阅读·人工智能·语言模型
Jamence2 天前
多模态大语言模型arxiv论文略读(157)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
苦瓜汤补钙3 天前
论文阅读:WildGS-SLAM:Monocular Gaussian Splatting SLAM in Dynamic Environments
linux·论文阅读·机器学习
张较瘦_3 天前
[论文阅读] 人工智能 + 软件工程 | 用大语言模型+排名机制,让代码评论自动更新更靠谱
论文阅读·人工智能·软件工程
Lifeng666666664 天前
chatgpt是怎么诞生的,详解GPT1到GPT4的演化之路及相关背景知识
论文阅读·人工智能·语言模型·chatgpt
Booksort4 天前
【论文笔记】A Deep Reinforcement Learning Based Real-Time Solution Policy for the TSP
论文阅读
北温凉4 天前
【论文阅读】基于注意力机制的冥想脑电分类识别研究(2025)
论文阅读·分类·数据挖掘