一文读懂什么是逻辑回归

逻辑回归介绍

逻辑回归(Logistic Regression)是一种经典的分类算法,尽管名字中带有 "回归",但它本质上用于解决二分类问题(也可扩展到多分类)。
逻辑回归的本质是 "在线性回归的基础上,通过一个映射函数将输出转化为概率(从而实现对类别概率的预测)",这个映射函数就是Sigmoid函数。

逻辑回归是机器学习中最基础的分类算法之一,核心是通过 Sigmoid 函数将线性输出转化为概率,结合交叉熵损失和梯度下降求解参数。

它虽简单,但在实际业务中(尤其是需要可解释性的场景)仍被广泛使用,也是理解更复杂分类模型(如神经网络)的基础。

sigmoid函数

复制代码
def sigmoid(z):
    """
    Compute the sigmoid of z

    Args:
        z (ndarray): A scalar, numpy array of any size.

    Returns:
        g (ndarray): sigmoid(z), with the same shape as z
         
    """

    g = 1 / (1 + np.exp(-z))
   
    return g

逻辑回归模型

逻辑回归的决策边界

线性逻辑回归

根据sigmoid函数图象:z=0是中间位置,视为决策边界;那么为了得到决策边界的特征情况,我们假设:

  • 线性模型 z = w1 * x1 + w2 * x2 + b
  • 参数 w1=w2=1, b=03,那么x2 = -x1 + 3这条直线就是决策边界

如果特征x在这条线的右边,那么此逻辑回归则预测为1,反之则预测为0;(分为两类)

多项式逻辑回归

多项式回归决策边界,我们假设:

  • 多项式模型:z = w1 * x12 + w2 * x22 + b
  • 参数:w1=w2=1, b=-1

如果特征x在圆的外面,那么此逻辑回归则预测为1,反之则预测为0;(分为两类)

扩展:随着多项式的复杂度增加,还可以拟合更更多非线性的复杂情况

逻辑回归的损失函数

平方损失和交叉熵损失

回顾下线性回归的损失函数(平方损失):


平方误差损失函数不适用于逻辑回归模型:平方损失在逻辑回归中是 "非凸函数"(存在多个局部最优解),难以优化;

所以我们需要一个新的损失函数,即交叉熵损失;交叉熵损失是 "凸函数",可通过梯度下降高效找到全局最优。

交叉熵源于信息论,我们暂时不做深入介绍,直接给出交叉熵损失函数公式:

对数回顾

复习下对数函数的性质,以便理解为什么 交叉熵损失是 "凸函数"?

简化交叉熵损失函数

为什么要用这个函数来表示?来源自 最大释然估计(Maximum Likelihood),这里不做过多介绍。

简化结果:

逻辑回归的梯度计算

自然对数求导公式:

链式求导法则:

⚠️注意:

过拟合问题

线性回归过拟合

逻辑回归过拟合

  • 欠拟合(underfit),存在高偏差(bias)
  • 泛化(generalization):希望我们的学习算法在训练集之外的数据上也能表现良好(预测准确)
  • 过拟合(overfit),存在高方差(variance)

解决过拟合的办法

  • 特征选择:只选择部分最相关的特征(基于直觉intuition)进行训练;缺点是丢掉了部分可能有用的信息
  • 正则化:正则化是一种更温和的减少某些特征的影响,而无需做像测地消除它那样苛刻的事:
    • 鼓励学习算法缩小参数,而不是直接将参数设置为0(保留所有特征的同时避免让部分特征产生过大的影响)
    • 鼓励把 w1 ~ wn 变小,b不用变小

正则化模型

It turns out that regularization is a way

to more gently reduce ths impacts of some of the features without doing something as harsh as eliminating it outright.

关于正则化项的说明:

带正则化项的损失函数

正则化线性回归

损失函数:

梯度计算:

分析梯度计算公式,由于alpha和lambda通常是很小的值,所以相当于在每次迭代之前把参数w缩小了一点点,这也就是正则化的工作原理,如下所示:

正则化逻辑回归

损失函数:

梯度计算:

线性回归和逻辑回归正则化总结

逻辑回归实战

模型选择

可视化训练数据,基于此数据选择线性逻辑回归模型

关键代码实现

复制代码
def sigmoid(z):
	g = 1 / (1 + np.exp(-z))
	return g

def compute_cost(X, y, w, b, lambda_= 1):
	"""
    Computes the cost over all examples
    Args:
      X : (ndarray Shape (m,n)) data, m examples by n features
      y : (array_like Shape (m,)) target value 
      w : (array_like Shape (n,)) Values of parameters of the model      
      b : scalar Values of bias parameter of the model
      lambda_: unused placeholder
    Returns:
      total_cost: (scalar)         cost 
    """

	m, n = X.shape
	total_cost = 0
	for i in range(m):
		f_wb_i = sigmoid(np.dot(X[i], w) + b)
		loss = -y[i] * np.log(f_wb_i) - (1 - y[i]) * np.log(1 - f_wb_i)
		total_cost += loss

	total_cost = total_cost / m
	return total_cost

def compute_gradient(X, y, w, b, lambda_=None): 
    """
    Computes the gradient for logistic regression 
 
    Args:
      X : (ndarray Shape (m,n)) variable such as house size 
      y : (array_like Shape (m,1)) actual value 
      w : (array_like Shape (n,1)) values of parameters of the model      
      b : (scalar)                 value of parameter of the model 
      lambda_: unused placeholder.
    Returns
      dj_dw: (array_like Shape (n,1)) The gradient of the cost w.r.t. the parameters w. 
      dj_db: (scalar)                The gradient of the cost w.r.t. the parameter b. 
    """
    m, n = X.shape
    dj_dw = np.zeros(n)
    dj_db = 0.

    for i in range(m):
        f_wb_i = sigmoid(np.dot(X[i], w) + b)
        diff = f_wb_i - y[i]
        dj_db += diff
        for j in range(n):
            dj_dw[j] = dj_dw[j] + diff * X[i][j]
    
    dj_db = dj_db / m
    dj_dw = dj_dw / m
        
    return dj_db, dj_dw

def gradient_descent(X, y, w_in, b_in, cost_function, gradient_function, alpha, num_iters, lambda_): 
    """
    Performs batch gradient descent to learn theta. Updates theta by taking 
    num_iters gradient steps with learning rate alpha
    
    Args:
      X :    (array_like Shape (m, n)
      y :    (array_like Shape (m,))
      w_in : (array_like Shape (n,))  Initial values of parameters of the model
      b_in : (scalar)                 Initial value of parameter of the model
      cost_function:                  function to compute cost
      alpha : (float)                 Learning rate
      num_iters : (int)               number of iterations to run gradient descent
      lambda_ (scalar, float)         regularization constant
      
    Returns:
      w : (array_like Shape (n,)) Updated values of parameters of the model after
          running gradient descent
      b : (scalar)                Updated value of parameter of the model after
          running gradient descent
    """
    
    # number of training examples
    m = len(X)
    
    # An array to store cost J and w's at each iteration primarily for graphing later
    J_history = []
    w_history = []

    w = copy.deepcopy(w_in)
    b = b_in
    
    for i in range(num_iters):
        dj_db, dj_dw = gradient_function(X, y, w, b, lambda_)
        w = w - alpha * dj_dw
        b = b - alpha * dj_db
        cost = cost_function(X, y, w, b, lambda_)
        J_history.append(cost)
        w_history.append(w)
        if i % math.ceil(num_iters / 10) == 0:
            print(f"{i:4d} cost: {cost:6f}, w: {w}, b: {b}")
        
    return w, b, J_history, w_history #return w and J,w history for graphing


def predict(X, w, b): 
    m, n = X.shape   
    p = np.zeros(m)
    for i in range(m):
        f_wb = sigmoid(np.dot(X[i], w) + b)
        p[i] = f_wb >= 0.5 
    return p

结果展示

复制代码
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
# 支持显示中文
font_path = '/System/Library/Fonts/STHeiti Light.ttc'
custom_font = fm.FontProperties(fname=font_path)
plt.rcParams["font.family"] = custom_font.get_name()

# 载入训练集
X_train, y_train = load_data("data/ex2data1.txt")
# 训练模型
np.random.seed(1)
intial_w = 0.01 * (np.random.rand(2).reshape(-1,1) - 0.5)
initial_b = -8
iterations = 10000
alpha = 0.001
w_out, b_out, J_history,_ = gradient_descent(X_train ,y_train, initial_w, initial_b, compute_cost, compute_gradient, alpha, iterations, 0)

# 根据训练结果(w_out和b_out)计算决策边界
#f = w0*x0 + w1*x1 + b
# x1 = -1 * (w0*x0 + b) / w1
plot_x = np.array([min(X_train[:, 0]), max(X_train[:, 0])])
plot_y = (-1. / w_out[1]) * (w_out[0] * plot_x + b_out)
# 将训练数据分类
x0s_pos = []
x1s_pos = []
x0s_neg = []
x1s_neg = []
for i in range(len(X_train)):
    x = X_train[i]
    # print(x)
    y_i = y_train[i]
    if y_i == 1:
        x0s_pos.append(x[0])
        x1s_pos.append(x[1])
    else:
        x0s_neg.append(x[0])
        x1s_neg.append(x[1])

# 绘图
plt.figure(figsize=(8, 6))
plt.scatter(x0s_pos, x1s_pos, marker='o', c='green', label="Admitted")
plt.scatter(x0s_neg, x1s_neg, marker='x', c='red', label="Not admitted")
plt.plot(plot_x, plot_y, lw=1, label="决策边界")
plt.xlabel('Exam 1 score', fontsize=12)
plt.ylabel('Exam 2 score', fontsize=12)
plt.title('在二维平面上可视化分类模型的决策边界', fontsize=14)
plt.legend(fontsize=12, loc='upper center')
plt.grid(True)
plt.show()


# 使用训练集计算预测准确率
p = predict(X_train, w_out, b_out)
print('Train Accuracy: %f'%(np.mean(p == y_train) * 100)) 
# Train Accuracy: 92.000000

正则化逻辑回归实战

模型选择

可视化训练数据,基于此数据选择多项式逻辑回归模型

关键代码实现

由于要拟合非线性决策边界,所以要增加特征的复杂度(训练数据里只有2个特征)。

特征映射函数

复制代码
# 将输入特征 X1 和 X2 转换为六次多项式特征
# 这个函数常用于逻辑回归或支持向量机等模型中,通过增加特征的复杂度来拟合非线性决策边界。
def map_feature(X1, X2):
    """
    Feature mapping function to polynomial features    
    """
    X1 = np.atleast_1d(X1)
    X2 = np.atleast_1d(X2)
    degree = 6
    out = []
    for i in range(1, degree+1):
        for j in range(i + 1):
            out.append((X1**(i-j) * (X2**j)))
    return np.stack(out, axis=1)

正则化后的损失函数和梯度计算函数

复制代码
def compute_cost_reg(X, y, w, b, lambda_ = 1):
    """
    Computes the cost over all examples
    Args:
      X : (array_like Shape (m,n)) data, m examples by n features
      y : (array_like Shape (m,)) target value 
      w : (array_like Shape (n,)) Values of parameters of the model      
      b : (array_like Shape (n,)) Values of bias parameter of the model
      lambda_ : (scalar, float)    Controls amount of regularization
    Returns:
      total_cost: (scalar)         cost 
    """
    m, n = X.shape
    # Calls the compute_cost function that you implemented above
    cost_without_reg = compute_cost(X, y, w, b) 
    
    reg_cost = 0.
    for j in range(n):
        reg_cost += w[j]**2
    
    # Add the regularization cost to get the total cost
    total_cost = cost_without_reg + (lambda_/(2 * m)) * reg_cost

    return total_cost

def compute_gradient_reg(X, y, w, b, lambda_ = 1): 
    """
    Computes the gradient for linear regression 
 
    Args:
      X : (ndarray Shape (m,n))   variable such as house size 
      y : (ndarray Shape (m,))    actual value 
      w : (ndarray Shape (n,))    values of parameters of the model      
      b : (scalar)                value of parameter of the model  
      lambda_ : (scalar,float)    regularization constant
    Returns
      dj_db: (scalar)             The gradient of the cost w.r.t. the parameter b. 
      dj_dw: (ndarray Shape (n,)) The gradient of the cost w.r.t. the parameters w. 

    """
    m, n = X.shape
    
    dj_db, dj_dw = compute_gradient(X, y, w, b)

    # Add the regularization 
    for j in range(n):
        dj_dw[j] += (lambda_ / m) * w[j]
        
    return dj_db, dj_dw

结果展示

复制代码
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
# 支持显示中文
font_path = '/System/Library/Fonts/STHeiti Light.ttc'
custom_font = fm.FontProperties(fname=font_path)
plt.rcParams["font.family"] = custom_font.get_name()

# 载入训练集
X_train, y_train = load_data("data/ex2data2.txt")
# 通过增加特征的复杂度来拟合非线性决策边界
X_mapped = map_feature(X_train[:, 0], X_train[:, 1])
print("Original shape of data:", X_train.shape)
print("Shape after feature mapping:", X_mapped.shape)

# 训练模型
np.random.seed(1)
initial_w = np.random.rand(X_mapped.shape[1])-0.5
initial_b = 1.
# Set regularization parameter lambda_ to 1 (you can try varying this)
lambda_ = 0.5
iterations = 10000
alpha = 0.01
w_out, b_out, J_history, _ = gradient_descent(X_mapped, y_train, initial_w, initial_b, compute_cost_reg, compute_gradient_reg, alpha, iterations, lambda_)

# 根据训练结果(w_out和b_out)计算决策边界
# - 创建网格点 u 和 v 覆盖特征空间
u = np.linspace(-1, 1.5, 50)
v = np.linspace(-1, 1.5, 50)
# - 计算每个网格点处的预测概率 z
z = np.zeros((len(u), len(v)))
# Evaluate z = theta*x over the grid
for i in range(len(u)):
    for j in range(len(v)):
        z[i,j] = sig(np.dot(map_feature(u[i], v[j]), w_out) + b_out)
# - 转置 z 是必要的,因为contour函数期望的输入格式与我们的计算顺序不一致      
z = z.T

# 分类
x0s_pos = []
x1s_pos = []
x0s_neg = []
x1s_neg = []
for i in range(len(X_train)):
    x = X_train[i]
    # print(x)
    y_i = y_train[i]
    if y_i == 1:
        x0s_pos.append(x[0])
        x1s_pos.append(x[1])
    else:
        x0s_neg.append(x[0])
        x1s_neg.append(x[1])

# 绘图
plt.figure(figsize=(8, 6))
plt.scatter(x0s_pos, x1s_pos, marker='o', c='black', label="y=1")
plt.scatter(x0s_neg, x1s_neg, marker='x', c='orange', label="y=0")
# 绘制决策边界(等高线)
plt.contour(u,v,z, levels = [0.5], colors="green")
# 创建虚拟线条用于图例(颜色和线型需与等高线一致)
plt.plot([], [], color='green', label="决策边界")

plt.xlabel('Test 1', fontsize=12)
plt.ylabel('Test 2', fontsize=12)
plt.title('正则化逻辑回归模型分类效果可视化(lambda=0.5)', fontsize=14)
# plt.legend(fontsize=12, loc='upper center')
plt.legend(fontsize=12)
plt.grid(True)
plt.show()


#Compute accuracy on the training set
p = predict(X_mapped, w_out, b_out)
print('Train Accuracy: %f'%(np.mean(p == y_train) * 100))
# Train Accuracy: 83.050847

正则化效果对比

正则化对损失和决策边界的影响

正则化项lambda参数大小对决策边界的影响

参考

吴恩达团队在Coursera开设的机器学习课程:https://www.coursera.org/specializations/machine-learning-introduction

在B站学习:https://www.bilibili.com/video/BV1Pa411X76s

相关推荐
橡晟11 分钟前
4.循环结构:让电脑做重复的事情
人工智能·python·深度学习·机器学习
盼小辉丶5 小时前
图机器学习(11)——链接预测
人工智能·机器学习·图机器学习
曾几何时`6 小时前
分别使用Cypher与python构建neo4j图谱
开发语言·python·机器学习
李昊哲小课8 小时前
支持向量机SVM
人工智能·算法·机器学习·支持向量机·数据挖掘·sklearn
王小王-1238 小时前
基于大数据电信诈骗行为分析与可视化预测系统的设计与实现【海量数据、多种机器学习对比、数据优化、过采样】
大数据·机器学习·电信诈骗·诈骗预测模型·欺诈模型·电信诈骗预测
算法_小学生8 小时前
Hinge Loss(铰链损失函数)详解:SVM 中的关键损失函数
开发语言·人工智能·python·算法·机器学习·支持向量机
roman_日积跬步-终至千里9 小时前
【机器学习【7】】数据预处理:数据准备、数据转换、数据输出
人工智能·机器学习
DechinPhy9 小时前
PyTorch中的take_along_dim
人工智能·pytorch·python·深度学习·机器学习
Leo Chaw12 小时前
40 - ScConv卷积模块
pytorch·深度学习·神经网络·机器学习·cnn
苍何13 小时前
2025值得推荐的AI生产力工具一览表(上)
机器学习