python学智能算法(十九)|SVM基础概念-超平面

引言

前序学习进程中,对向量相关的基本知识进行了学习,链接为:
向量的值和方向
向量点积

在实际的支持向量机算法使用中,最核心的目标是找出可以实现分类的超平面,超平面就是分割的点、线或者面,不要在这个名字上花费太多力气。

在中学数学里,我们知道含有两个未知数的二元一次方程y=kx+b可以表达直线,含有三个未知数的三元一次方程Ax+By+Cz=0可以表达面。

稍微换一个思路,两个未知数按照线性关系组合,它们应当位于一条直线上;三个未知数则可以把这条直线旋转360度,线动成面,三元一次方程可以表达面。

对于数据的分割,也可以细分讨论:

  • 当所有点都沿着一条线分布,在这条线上取一个中间点就可以把点分割成两部分;
    当所有点在xoy坐标平面上分布,需要画一条直线才能将所有点分割成两部分;
    当做有点在0xyz坐标系上分布,需要画一个平面才能将所有点分割成两部分。

超平面方程定义

从大家都很熟悉的直线定义介入:y=kx+b。

  • 第一步,将其改写为:x2=kx1+b
  • 第二步,移项为kx1-x2+b=0
  • 第三步,定义变量向量X=(x1,x2),权重向量W=(w1,w2)=(k,-1),把原式转化为:
    W ⋅ X + b = 0 W\cdot X+b=0 W⋅X+b=0
    至此,直线的表达换成了向量点积,并且向量W和X可以是任意维度。换句话说,支持向量机实现分割的超平面,就是用向量点积表达的点、线或者面。本质上,超平面是个点集。

增强向量

在前序讨论中,大家已经看到通过矩阵点积可以表达分割超平面,但这个公式不够简洁,还需要把b单独列出,基于此,我们想办法构造新的向量,使得超平面的表达是一个单纯的矩阵点积。

这种人为增加一个向量元素的新向量,就是增强向量。

对于变量向量X,增加一个变量x0=1,此时得到:
X ˉ = ( x 0 , x 1 , x 2 ) = ( 1 , x 1 , x 2 ) \bar{X}=(x0,x1,x2)=(1,x1,x2) Xˉ=(x0,x1,x2)=(1,x1,x2)

对于权重向量W,增加一个变量w0=b,此时得到:
W ˉ = ( w 0 , w 1 , w 2 ) = ( b , k , − 1 ) \bar{W}=(w0,w1,w2)=(b,k,-1) Wˉ=(w0,w1,w2)=(b,k,−1)

此时超平面的向量表达式转化为:
W ˉ ⋅ X ˉ = 0 \bar{W} \cdot \bar{X}=0 Wˉ⋅Xˉ=0

总结

学习了超平面用向量点积表示的基础知识。

相关推荐
JH307313 小时前
Java 是值传递:深入理解参数传递机制
java·开发语言·windows
拉姆哥的小屋13 小时前
突破传统PINN瓶颈:基于LSTM-格林函数的3D瞬态温度场智能预测新方法
人工智能·3d·lstm
无心水13 小时前
【神经风格迁移:深度实战】7、高级调参实战指南:从调参盲盒到科学优化方法论
人工智能·深度学习·神经网络·机器学习·vgg·神经风格迁移·vgg19
中年程序员一枚13 小时前
python开发接口uvicorn方法启动FastAPI,postman调用接口
python·postman·fastapi
️停云️13 小时前
C++类型转换、IO流与特殊类的设计
c语言·开发语言·c++
夏乌_Wx14 小时前
练题100天——DAY24:罗马数字转整数+环形链表+大小端判断
算法
youngee1114 小时前
hot100-48腐烂的橘子
算法
luojiezong14 小时前
锐捷极简以太彩光网络解决方案入选《“AI中国”生态范式案例集(2025)》
网络·人工智能
周杰伦_Jay14 小时前
【LangGraph】图结构智能体框架核心特性
python·开源