bash方式启动模型训练

export \

PATHPYTHONPATH=/workspace/mmlab/mmdetection/:/workspace/mmlab/mmsegmentation/:/workspace/mmlab/mmdeploy/:${env:PYTHONPATH} \

CUDA_VISIBLE_DEVICES=0 \

DATA_ROOT_1=/mnt/data/.../ \

DATA_ROOT_2=/mnt/data/.../ \

DATA_ROOT_MASK=/.../ \

PATH_COMMON_PACKAGES_SO=...so

nohup \

python main.py \

mtn.py \

--train \

--work_dir work_dirs/0720/ \

> log_0720_stdout.txt \

2> log_0720_stderr.txt \

&

AI解读:

这段指令的目标是设置环境变量并运行一个 Python 脚本来启动训练任务,同时将日志输出分别记录到文件。具体解读如下:

1. 环境变量设置:

  • export PATH PYTHONPATH:

    • 将 /workspace/mmlab/mmdetection/、/workspace/mmlab/mmsegmentation/ 和 /workspace/mmlab/mmdeploy/ 添加到 PYTHONPATH 环境变量,并保留已有值 ${env:PYTHONPATH}。
  • CUDA_VISIBLE_DEVICES=0:

    • 限制任务仅使用第 0 号 GPU。
  • DATA_ROOT_1:

    • 指定数据路径为 /mnt/data/...。
  • DATA_ROOT_2:

    • 设置另一个低分辨率数据路径。
  • DATA_ROOT_MASK:

    • 车辆遮罩数据路径设置为 /mnt/data/.../。
  • PATH_COMMON_PACKAGES_SO:

    • 指定动态库 .so 文件的位置。

2. 运行训练脚本:

  • nohup:

    • 确保任务在后台运行,即使关闭终端也不会中断。
  • python main.py mtn.py:

    • 启动 Python 脚本,并加载配置文件 mtn.py
  • --train:

    • 指定运行脚本的训练模式。
  • --work_dir work_dirs/0720/:

    • 定义训练的工作目录为 work_dirs/0720/。

3. 日志记录:

  • > log_0720_stdout.txt:

    • 将标准输出内容记录到 log_0720_stdout.txt 文件。
  • 2> log_0720_stderr.txt:

    • 将标准错误输出重定向到 log_0720_stderr.txt 文件。

4. 后台运行:

  • &:

    • 命令将以后台方式运行,释放终端继续其他操作。

这段指令设计得很好,日志分别记录标准输出和错误,路径清晰!🌟 希望你的训练任务顺利完成! 💧✨

相关推荐
m0_6501082417 小时前
Lift, Splat, Shoot:自动驾驶多视图相机的 BEV 语义表示学习
论文阅读·自动驾驶·数据驱动·lss·纯视觉bev感知·bev 语义分割·可解释的端到端轨迹规划
m0_6501082421 小时前
Sparse4D v3:端到端 3D 检测与跟踪的技术突破
论文阅读·自动驾驶·sparse4d v3·端到端3d感知框架·去噪思想·端到端跟踪·纯视觉感知
m0_650108242 天前
VADv2:基于概率规划的端到端矢量化自动驾驶
论文阅读·自动驾驶·端到端矢量化·驾驶场景中的不确定性·概率场建模·多模态编码·vadv2
m0_650108242 天前
DiffVLA:视觉语言引导的扩散规划在自动驾驶中的创新与实践
自动驾驶·扩散模型·多模态融合·端到端规划·混合稀疏-稠密感知模块·vlm命令引导·截断扩散
Wai-Ngai2 天前
自动驾驶控制算法——模型预测控制(MPC)
人工智能·机器学习·自动驾驶
QianCenRealSim2 天前
FSD入华“加速”中国自动驾驶产业的推动与重构
人工智能·重构·自动驾驶
AI Planner&Control2 天前
自动驾驶控制算法——车辆七自由度动力学模型
自动驾驶
韩曙亮2 天前
【自动驾驶】Autoware 三大版本 ( Autoware.AI | Autoware.Auto | Autoware Core/Universe )
人工智能·机器学习·自动驾驶·autoware·autoware.ai·autoware.auto
Bol52612 天前
「“嵌”入未来,“式”界无限」从智能家居到工业4.0,从可穿戴设备到自动驾驶,嵌入式技术正以前所未有的深度和广度,悄然重塑我们的世界
人工智能·自动驾驶·智能家居
veritascxy2 天前
PyTorch-CUDA镜像支持自动驾驶感知模块训练
pytorch·自动驾驶·cuda