TCN-Transformer-GRU组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析MATLAB代码





🧠 一、研究背景

  • 深度学习在序列建模中的融合趋势 :近年来,TCN(时序卷积网络)、Transformer(自注意力机制)和 GRU(门控循环单元)常被组合使用,以结合各自的优势:
    • TCN:捕捉长期依赖,感受野大,适合时序建模。
    • Transformer:通过自注意力机制捕捉全局依赖。
    • GRU:处理序列数据,具有记忆门控机制,适合时序动态建模。
  • 应用场景 :适用于时间序列预测、多变量回归、工业过程建模、能源预测等领域,尤其适合高维输入、多输出的复杂回归问题。

🛠 二、主要功能

  1. 数据预处理:读取数据、归一化、划分训练/测试集。
  2. 构建 TCN-Transformer-GRU 混合网络
    • 输入 → TCN(多层残差扩张卷积)→ 位置编码 → Transformer(自注意力)→ GRU → 全连接 → 输出。
  3. 模型训练与评估
    • 使用 Adam 优化器训练。
    • 输出训练过程中的 RMSE 和 Loss 曲线。
  4. 结果可视化
    • 预测值与真实值对比图。
    • 百分比误差图。
    • 散点拟合图。
    • 模型性能总结图(R²、RMSE)。
  5. 特征重要性分析
    • 使用 SHAP 值(Shapley additive explanations)分析特征对输出的贡献。
  6. 新数据预测
    • 加载新数据进行预测,并输出结果。

📦 三、算法步骤

  1. 数据准备
    • 从 Excel 读取数据,前 5 列为输入,后 2 列为输出。
    • 归一化到 [0, 1]。
    • 按比例划分训练/测试集。
  2. 网络构建
    • TCN 模块:多层残差扩张卷积,每层扩张因子递增(2^(i-1))。
    • 位置编码层:为序列添加位置信息。
    • Transformer 模块:两个自注意力层,支持因果掩码。
    • GRU 层:提取序列特征。
    • 回归输出层:全连接 + 回归层。
  3. 训练
    • 使用 Adam 优化器,学习率分段下降。
    • 记录训练过程中的 RMSE 和 Loss。
  4. 预测与反归一化
    • 分别预测训练集和测试集。
    • 反归一化得到实际值。
  5. 评估与可视化
    • 计算 R²、MAE、RMSE。
    • 绘制多种图表进行对比分析。
  6. 特征解释
    • 调用 shapley_function 计算 SHAP 值。
  7. 新数据预测
    • 调用 newpre 函数对新数据进行预测。

🧩 四、技术路线

复制代码
数据 → 归一化 → TCN(残差扩张卷积)→ 位置编码 → Transformer(自注意力)→ GRU → 全连接 → 输出
  • TCN:通过扩张卷积扩大感受野,残差连接缓解梯度消失。
  • Transformer:自注意力机制捕捉全局依赖。
  • GRU:进一步提取时序动态特征。

📐 五、公式原理(简要)

  1. TCN 扩张卷积
    yt=∑k=0K−1wk⋅xt−d⋅k y_t = \sum_{k=0}^{K-1} w_k \cdot x_{t - d \cdot k} yt=k=0∑K−1wk⋅xt−d⋅k
    其中 (d) 为扩张因子。
  2. Transformer 自注意力
    Attention(Q,K,V)=softmax(QKTdk)V \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V
  3. GRU 更新门与重置门
    zt=σ(Wz⋅[ht−1,xt]) z_t = \sigma(W_z \cdot [h_{t-1}, x_t]) zt=σ(Wz⋅[ht−1,xt])
    rt=σ(Wr⋅[ht−1,xt]) r_t = \sigma(W_r \cdot [h_{t-1}, x_t]) rt=σ(Wr⋅[ht−1,xt])
    h~t=tanh⁡(W⋅[rt⊙ht−1,xt]) \tilde{h}t = \tanh(W \cdot [r_t \odot h{t-1}, x_t]) h~t=tanh(W⋅[rt⊙ht−1,xt])
    ht=(1−zt)⊙ht−1+zt⊙h~t h_t = (1-z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t ht=(1−zt)⊙ht−1+zt⊙h~t

⚙ 六、参数设定(代码中关键超参数)

参数 说明
maxPosition 位置编码最大长度(128)
numHeads 自注意力头数(4)
numKeyChannels 键通道数(64)
hiddens GRU 隐藏单元数(64)
numFilters TCN 卷积核数量(32)
filterSize 卷积核大小(3)
dropoutFactor Dropout 比率(0.1)
numBlocks TCN 残差块数(3)
MaxEpochs 最大训练轮数(1000)
InitialLearnRate 初始学习率(1e-3)

💻 七、运行环境

  • 平台:MATLAB(建议 R2024b 及以上版本)

🏭 八、应用场景

  1. 工业过程预测:如化工过程、电力负荷预测。
  2. 能源与环境:如风速预测、污染物浓度预测。
  3. 金融时间序列:如股票价格、汇率预测。
  4. 健康医疗:如生理信号预测(多指标输出)。
  5. 交通流量预测:多路段流量同时预测。

完整代码私信回复TCN-Transformer-GRU组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析MATLAB代码

相关推荐
jay神1 小时前
基于深度学习和协同过滤算法的美妆商品推荐系统
人工智能·深度学习·算法·毕业设计·协同过滤算法
逄逄不是胖胖2 小时前
《动手学深度学习》-56GRN实现
pytorch·python·深度学习
盼小辉丶2 小时前
PyTorch实战(26)——PyTorch分布式训练
pytorch·分布式·深度学习·分布式训练
shangjian0072 小时前
AI-大语言模型LLM-Transformer架构5-残差连接与前馈网络
人工智能·语言模型·transformer
管牛牛12 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
副露のmagic14 小时前
深度学习基础复健
人工智能·深度学习
番茄大王sc14 小时前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记
爱吃泡芙的小白白17 小时前
神经网络压缩实战指南:让大模型“瘦身”跑得更快
人工智能·深度学习·神经网络·模型压缩
YelloooBlue17 小时前
深度学习 SOP: conda通过命令快速构建指定版本tensorflow gpu环境。
深度学习·conda·tensorflow