TTS-1技术报告:基于Transformer的文本转语音模型

TTS-1技术报告

我们介绍了Inworld TTS-1,这是一组两个基于Transformer的自回归文本转语音(TTS)模型。我们最大的模型TTS-1-Max拥有88亿参数,专为要求苛刻的应用场景提供最高质量和表现力。TTS-1是我们最高效的模型,具有16亿参数,专为实时语音合成和边缘设备用例而构建。

通过扩展训练计算量并应用语音语言模型(SpeechLM)组件的预训练、微调和RL对齐的序列化流程,这两个模型在各种基准测试中都实现了最先进的性能,仅依靠说话者语音的上下文学习就展现出卓越的质量。

Inworld TTS-1和TTS-1-Max能够以低延迟生成48kHz高分辨率语音,支持11种语言,并通过音频标记实现精细的情感控制和非语言发声。我们还以MIT许可证开源了训练和建模代码。

技术细节

  • 模型架构:基于Transformer的自回归模型
  • 参数量:TTS-1-Max(8.8B)/TTS-1(1.6B)
  • 采样率:48kHz高分辨率音频
  • 支持语言:11种
  • 特色功能:音频标记控制、情感表达、非语言发声
  • 训练流程:预训练→微调→RL对齐三阶段
  • 开源协议:MIT许可证

性能表现

模型在多项基准测试中达到state-of-the-art水平,完全基于上下文学习实现高质量的语音合成。特别在以下方面表现突出:

  1. 语音自然度和表现力
  2. 多语言支持能力
  3. 低延迟实时生成
  4. 边缘设备部署效率
    更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)
    公众号二维码
相关推荐
@鱼香肉丝没有鱼11 小时前
Transformer原理—注意力机制
人工智能·深度学习·transformer·注意力机制
m0_6501082411 小时前
DETR:基于 Transformer 的端到端目标检测
论文阅读·深度学习·目标检测·transformer·全局建模 + 直接集合预测”·betr
Cathyqiii13 小时前
序列建模模型原理及演进——从RNN、Transformer到SSM与Mamba
人工智能·rnn·深度学习·transformer
java1234_小锋1 天前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 残差连接(Residual Connection)详解以及算法实现
深度学习·语言模型·transformer
【建模先锋】1 天前
多源信息融合!基于特征信号VMD分解+CNN-Transformer的故障诊断模型!
人工智能·深度学习·cnn·transformer·故障诊断·多源信息融合
自动驾驶小学生1 天前
Transformer和LLM前沿内容(1):Transformer and LLM(注定成为经典)
人工智能·深度学习·llm·transformer
盼小辉丶2 天前
Transformer实战(31)——解释Transformer模型决策
深度学习·transformer·可解释人工智能
java1234_小锋2 天前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 编码器(Encoder)详解以及算法实现
深度学习·语言模型·transformer
相思半2 天前
机器学习模型实战全解析
大数据·人工智能·笔记·python·机器学习·数据挖掘·transformer
音元系统2 天前
音元系统:首页
语音识别·语音合成·输入法·语音模型·语音分析