TTS-1技术报告:基于Transformer的文本转语音模型

TTS-1技术报告

我们介绍了Inworld TTS-1,这是一组两个基于Transformer的自回归文本转语音(TTS)模型。我们最大的模型TTS-1-Max拥有88亿参数,专为要求苛刻的应用场景提供最高质量和表现力。TTS-1是我们最高效的模型,具有16亿参数,专为实时语音合成和边缘设备用例而构建。

通过扩展训练计算量并应用语音语言模型(SpeechLM)组件的预训练、微调和RL对齐的序列化流程,这两个模型在各种基准测试中都实现了最先进的性能,仅依靠说话者语音的上下文学习就展现出卓越的质量。

Inworld TTS-1和TTS-1-Max能够以低延迟生成48kHz高分辨率语音,支持11种语言,并通过音频标记实现精细的情感控制和非语言发声。我们还以MIT许可证开源了训练和建模代码。

技术细节

  • 模型架构:基于Transformer的自回归模型
  • 参数量:TTS-1-Max(8.8B)/TTS-1(1.6B)
  • 采样率:48kHz高分辨率音频
  • 支持语言:11种
  • 特色功能:音频标记控制、情感表达、非语言发声
  • 训练流程:预训练→微调→RL对齐三阶段
  • 开源协议:MIT许可证

性能表现

模型在多项基准测试中达到state-of-the-art水平,完全基于上下文学习实现高质量的语音合成。特别在以下方面表现突出:

  1. 语音自然度和表现力
  2. 多语言支持能力
  3. 低延迟实时生成
  4. 边缘设备部署效率
    更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)
    公众号二维码
相关推荐
2401_828890642 天前
使用 BERT 实现意图理解和实体识别
人工智能·python·自然语言处理·bert·transformer
北京地铁1号线2 天前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
机器学习之心2 天前
分解+优化+预测!CEEMDAN-Kmeans-VMD-DOA-Transformer-LSTM多元时序预测
lstm·transformer·kmeans·多元时序预测·双分解
会写代码的饭桶2 天前
通俗理解 LSTM 的三门机制:从剧情记忆到科学原理
人工智能·rnn·lstm·transformer
闲看云起2 天前
从BERT到T5:为什么说T5是NLP的“大一统者”?
人工智能·语言模型·transformer
爆改模型2 天前
【ICCV2025】计算机视觉|即插即用|ESC:颠覆Transformer!超强平替,ESC模块性能炸裂!
人工智能·计算机视觉·transformer
nju_spy3 天前
李沐深度学习论文精读(二)Transformer + GAN
人工智能·深度学习·机器学习·transformer·gan·注意力机制·南京大学
跳跳糖炒酸奶3 天前
第六章、从transformer到nlp大模型:编码器-解码器模型 (Encoder-Decoder)
深度学习·自然语言处理·transformer
胡耀超3 天前
大模型架构演进全景:从Transformer到下一代智能系统的技术路径(MoE、Mamba/SSM、混合架构)
人工智能·深度学习·ai·架构·大模型·transformer·技术趋势分析
爆改模型3 天前
【ICCV2025】计算机视觉|即插即用|ESC:超越Transformer!即插即用ESC模块,显著提升图像超分辨率性能!
人工智能·计算机视觉·transformer