基因表达数据的K-M生存曲线的数据处理及绘制

基因表达K-M(Kaplan-Meier )生存曲线是将经典的生存分析与基因表达数据相结合,用于探究特定基因的表达水平高低是否与患者(或其他研究对象)的生存预后(如总体生存期、无病生存期)存在显著关联。

Kaplan-Meier 曲线:一种统计学方法,用于估计在不同时间点患者的生存概率。它能很好地处理在研究结束时部分患者尚未发生终点事件(如死亡)的"删失"数据。

基因表达:通过测序(如RNA-seq)或芯片技术测量得到的基因在细胞中的mRNA水平。表达水平通常是一个连续数值。

简单来说: 将一个连续测量的基因表达值,通过一个阈值(如中位数或最佳截断值)划分为 " 高表达组 " " 低表达组 ",然后比较这两组患者的生存曲线,看是否存在统计学上的显著差异。

本期教程详细介绍了基因表达数据的K-M生存曲线的数据处理及绘制。

一、数据处理与分组:

1.将表达数据按照表达数据的中位数分为高、低的表达组:①单元格G2中,使用公式=MEDIAN(C2:C468)计算得出的表达数据的中位数为588;②单元格E2中用公式=IF(D2<G2,"LOW","HIGH")判断与中位数的大小关系,若小于中位数则为LOW,高于则为HIGH,据此对表达数据进行高低分组。③在单元格F2中,使用公式=IF(C2="Dead",1,0)将C列中的文字状态描述转化为数字描述,1表示Dead,0表示Alive。

2.打开选中组别列,也就是E列,点击右上角的排序与筛选,选择降序,在跳出的对话框选择扩展选定区域。

二、数据分析及绘图

1.打开Graphpad prism软件,安装下右图的格式将生存时间和状态数据按照高、低表达组(High expression & Low expression)两列错位输入;

2.点击左侧的工具栏,选择"New Analysis"选项,在弹出的Analyze Data或Create New Analysis界面中选择Survival analyses,选择Simple survival analysis(Kaplan-Meier);

3.在弹出的参数设置界面按以下图示设置即可;

4.在左侧工具栏中,点击Graphs下的Survival proportions,页面出现图形即为生存曲线图形,需要对其进一步细节美化;

5.双击坐标轴,在跳出的对话框下,分别修改边框大小,数据间隔改为0;

6.双击图形,分别对两条曲线进行修改颜色和大小;

7.添加误差带,点击对话框下的"Change Graph Type",在跳出的对话框,选择将Error bars,选择95%CI;

回到图层设置页面,分别对两条曲线进行修改置信区间的颜色等;

8.接着对其进行其它细节美化,包括字体格式、图例、添加注释等,K-M生存曲线最终效果图如下图所示:

以上就是基因表达数据的K-M生存曲线的数据处理及绘制步骤,根据以上步骤即可绘制出带有置信区间的生存曲线,大家快去试试吧!

------ END ------

相关推荐
张较瘦_3 天前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
CV-杨帆4 天前
论文阅读:arxiv 2025 OptimalThinkingBench: Evaluating Over and Underthinking in LLMs
论文阅读
七元权4 天前
论文阅读-EfficientAD
论文阅读·深度学习·实时·异常检测
Matrix_114 天前
论文阅读:Multi-Spectral Image Color Reproduction
论文阅读·人工智能·计算摄影
噜~噜~噜~5 天前
论文笔记:“Mind the Gap Preserving and Compensating for the Modality Gap in“
论文阅读
张较瘦_5 天前
[论文阅读] AI+ | 从 “刚性科层” 到 “智能协同”:一文读懂 AI 应对国家安全风险的核心逻辑
论文阅读·人工智能
张较瘦_5 天前
[论文阅读] AI+ | GenAI重塑智慧图书馆:华东师大实践AI虚拟馆员,解放馆员聚焦高价值任务
论文阅读·人工智能
CoookeCola6 天前
MovieNet (paper) :推动电影理解研究的综合数据集与基准
数据库·论文阅读·人工智能·计算机视觉·视觉检测·database
张较瘦_7 天前
[论文阅读] AI+ | AI如何重塑审计行业?从“手工筛查”到“智能决策”:AI审计的核心逻辑与未来路径
论文阅读·人工智能
苦瓜汤补钙7 天前
论文阅读——Segment Anything(Meta AI)——SAM
论文阅读·图像处理·人工智能·nlp·ai编程