【1】引言
前序学习进程中,已经初步学习了伽马函数入门和伽马函数溯源初步,
今天继续溯源伽马函数。
【2】对数函数转换为指数函数
在伽马函数溯源初步中,我们已经证明:
当 s s s为正整数 n n n时,
∫ 0 1 ( − l n t ) s d t = s ! \int_{0}^{1}(-lnt)^sdt=s! ∫01(−lnt)sdt=s!
积分式和阶乘式相等,阶乘式和积分式的等价形式有了雏形。
但现实中的积分式却存在一种情况,当 s ≤ − 1 s\leq-1 s≤−1时,积分 ∫ 0 1 ( − l n t ) s d t \int_{0}^{1}(-lnt)^sdt ∫01(−lnt)sdt本身是发散的,因此有必要引入衰减因子,让积分函数的定义域覆盖面更广。
实际上我们最后见到的伽马函数式是积分式,所以如果着急,学到当前这一步依然令人迷惑。
我们回到之前提过的积分变换:
首先令 u = − l n t u=-ln t u=−lnt,有: d u = − 1 t d t d t = − t d u t = e − u du=-\frac{1}{t}dt\\ dt=-tdu \\t=e^{-u} du=−t1dtdt=−tdut=e−u
此时被积函数变换为:
( − l n t ) s = u s (-lnt)^s=u^s (−lnt)s=us
当 t → 0 + t\rightarrow 0^+ t→0+时, u = − l n t = + ∞ u=-lnt=+\infty u=−lnt=+∞
当 t → 1 t\rightarrow 1 t→1时, u = − l n t = 0 u=-lnt=0 u=−lnt=0
将上述变换代入积分式:
∫ 0 1 ( − l n t ) s d t = ∫ + ∞ 0 u s ( − t ) d u = ∫ + ∞ 0 u s ( − e u ) d u = ∫ 0 + ∞ u s e − u d u \int_{0}^{1}(-lnt)^sdt=\int_{+\infty}^{0}u^s(-t)du=\\ \int_{+\infty}^{0}u^s(-e^u)du=\int_{0}^{+\infty}u^se^{-u}du ∫01(−lnt)sdt=∫+∞0us(−t)du=∫+∞0us(−eu)du=∫0+∞use−udu
所以,此时非常重要的,阶乘的积分表示为:
x ! = ∫ 0 + ∞ u s e − u d u x!=\int_{0}^{+\infty}u^se^{-u}du x!=∫0+∞use−udu
【3】总结
说实话写到这一步有点醉,因为这个学习过程有点翻来覆去,这部分内容先讲到这里,理解到这里已经不耽误使用,大家大可放心继续向前学习其他新知识。