神经网络|(十八)概率论基础知识-伽马函数溯源-阶乘的积分表达式

【1】引言

前序学习进程中,已经初步学习了伽马函数入门伽马函数溯源初步

今天继续溯源伽马函数。

【2】对数函数转换为指数函数

伽马函数溯源初步中,我们已经证明:

当 s s s为正整数 n n n时,
∫ 0 1 ( − l n t ) s d t = s ! \int_{0}^{1}(-lnt)^sdt=s! ∫01(−lnt)sdt=s!

积分式和阶乘式相等,阶乘式和积分式的等价形式有了雏形。

但现实中的积分式却存在一种情况,当 s ≤ − 1 s\leq-1 s≤−1时,积分 ∫ 0 1 ( − l n t ) s d t \int_{0}^{1}(-lnt)^sdt ∫01(−lnt)sdt本身是发散的,因此有必要引入衰减因子,让积分函数的定义域覆盖面更广。

实际上我们最后见到的伽马函数式是积分式,所以如果着急,学到当前这一步依然令人迷惑。

我们回到之前提过的积分变换:

首先令 u = − l n t u=-ln t u=−lnt,有: d u = − 1 t d t d t = − t d u t = e − u du=-\frac{1}{t}dt\\ dt=-tdu \\t=e^{-u} du=−t1dtdt=−tdut=e−u

此时被积函数变换为:
( − l n t ) s = u s (-lnt)^s=u^s (−lnt)s=us

当 t → 0 + t\rightarrow 0^+ t→0+时, u = − l n t = + ∞ u=-lnt=+\infty u=−lnt=+∞

当 t → 1 t\rightarrow 1 t→1时, u = − l n t = 0 u=-lnt=0 u=−lnt=0

将上述变换代入积分式:
∫ 0 1 ( − l n t ) s d t = ∫ + ∞ 0 u s ( − t ) d u = ∫ + ∞ 0 u s ( − e u ) d u = ∫ 0 + ∞ u s e − u d u \int_{0}^{1}(-lnt)^sdt=\int_{+\infty}^{0}u^s(-t)du=\\ \int_{+\infty}^{0}u^s(-e^u)du=\int_{0}^{+\infty}u^se^{-u}du ∫01(−lnt)sdt=∫+∞0us(−t)du=∫+∞0us(−eu)du=∫0+∞use−udu

所以,此时非常重要的,阶乘的积分表示为:
x ! = ∫ 0 + ∞ u s e − u d u x!=\int_{0}^{+\infty}u^se^{-u}du x!=∫0+∞use−udu

【3】总结

说实话写到这一步有点醉,因为这个学习过程有点翻来覆去,这部分内容先讲到这里,理解到这里已经不耽误使用,大家大可放心继续向前学习其他新知识。

相关推荐
leo__5207 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体7 小时前
云厂商的AI决战
人工智能
njsgcs8 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派8 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch8 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中9 小时前
第1章 机器学习基础
人工智能·机器学习
wyw00009 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI9 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云20109 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲9 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程