PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现

代码实现了一个物理信息神经网络(Physics-Informed Neural Network, PINN),用于求解如下二阶常微分方程(ODE)的边值问题:


📌 一、主要功能


🔗 二、逻辑关联

三个文件之间的调用关系如下:

复制代码
main.m → modelLoss.m → computeDerivatives.m
  • main.m:主训练脚本,定义网络结构、训练循环、测试与可视化;
  • modelLoss.m:计算总损失(边界条件损失 + PDE 残差损失);
  • computeDerivatives.m:使用自动微分计算网络输出的二阶导数。

🧠 三、算法步骤

  1. 生成训练数据:在区间 ([0, \pi/2]) 内生成内部点和边界点;
  2. 构建神经网络:3层隐藏层,每层20个神经元,使用 tanh 激活函数;
  3. 训练循环
    • 使用 dlfevalmodelLoss 计算损失和梯度;
    • 使用 Adam 优化器更新网络参数;
  4. 测试与评估:在测试集上预测并比较解析解,绘制误差和损失曲线。

🛠 四、技术路线

  • 深度学习框架 :使用 MATLAB 的 dlnetwork 和自动微分(dlgradient);
  • 物理信息嵌入:将 PDE 残差作为损失项,强制网络满足物理规律;
  • 自动微分:计算网络输出的二阶导数,用于构建 PDE 残差项;
  • 优化算法:使用 Adam 优化器进行训练。

📐 五、公式原理

⚙️ 六、参数设定

参数 说明
xmin 0 区间左端点
xmax π/2 区间右端点
N_interior 100 内部训练点数
numNeurons 20 每层神经元数
numEpochs 3000 训练轮数
learningRate 0.001 Adam 学习率
activation tanh 隐藏层激活函数

💻 七、运行环境

  • 软件:MATLAB(推荐 R2021a 或更高版本);
  • 工具箱:Deep Learning Toolbox;
  • 硬件:支持 CPU 或 GPU 训练(若可用)。

📊 输出结果

  • 解的对比图(解析解 vs PINN 预测);
  • 绝对误差图;
  • 训练损失曲线(总损失、边界损失、PDE 损失);
  • 最大绝对误差数值输出。

matlab 复制代码
 部分源码

.lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
%% 清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
x; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
% 生成训练数据
N_interior = 100;         % 内部点数量
x_interior = linspace(xmin, xmax, N_interior)';
x_boundary = [xmin; xmax]; % 边界点
% 转换为dlarray (通道×批次格式)
x_interior_dl = dlarray(x_interior', 'CB');  % 1×100
x_boundary_dl = dlarray(x_boundary', 'CB');  % 1×2

完整源码私信回复PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现

相关推荐
SmartRadio6 分钟前
在CH585M代码中如何精细化配置PMU(电源管理单元)和RAM保留
linux·c语言·开发语言·人工智能·单片机·嵌入式硬件·lora
旦莫11 分钟前
Pytest教程:Pytest与主流测试框架对比
人工智能·python·pytest
wuk99811 分钟前
梁非线性动力学方程MATLAB编程实现
前端·javascript·matlab
●VON16 分钟前
从模型到价值:MLOps 工程体系全景解析
人工智能·学习·制造·von
一个与程序bug抗争的程序员37 分钟前
Matlab App Designer设计人机交互界面并打包成exe——加法计算器
matlab·人机交互
智慧地球(AI·Earth)37 分钟前
Codex配置问题解析:wire_api格式不匹配导致的“Reconnecting...”循环
开发语言·人工智能·vscode·codex·claude code
GISer_Jing41 分钟前
AI:多智能体协作与记忆管理
人工智能·设计模式·aigc
qq_411262421 小时前
纯图像传感器(只出像素),还是 Himax WiseEye/WE1/WE-I Plus 这类带处理器、能在端侧跑模型并输出“metadata”的模块
人工智能·嵌入式硬件·esp32·四博智联
InfiSight智睿视界1 小时前
门店智能体技术如何破解美容美发连锁的“标准执行困境”
大数据·运维·人工智能
Toky丶1 小时前
【文献阅读】BitNet Distillation
人工智能