PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现

代码实现了一个物理信息神经网络(Physics-Informed Neural Network, PINN),用于求解如下二阶常微分方程(ODE)的边值问题:


📌 一、主要功能


🔗 二、逻辑关联

三个文件之间的调用关系如下:

复制代码
main.m → modelLoss.m → computeDerivatives.m
  • main.m:主训练脚本,定义网络结构、训练循环、测试与可视化;
  • modelLoss.m:计算总损失(边界条件损失 + PDE 残差损失);
  • computeDerivatives.m:使用自动微分计算网络输出的二阶导数。

🧠 三、算法步骤

  1. 生成训练数据:在区间 ([0, \pi/2]) 内生成内部点和边界点;
  2. 构建神经网络:3层隐藏层,每层20个神经元,使用 tanh 激活函数;
  3. 训练循环
    • 使用 dlfevalmodelLoss 计算损失和梯度;
    • 使用 Adam 优化器更新网络参数;
  4. 测试与评估:在测试集上预测并比较解析解,绘制误差和损失曲线。

🛠 四、技术路线

  • 深度学习框架 :使用 MATLAB 的 dlnetwork 和自动微分(dlgradient);
  • 物理信息嵌入:将 PDE 残差作为损失项,强制网络满足物理规律;
  • 自动微分:计算网络输出的二阶导数,用于构建 PDE 残差项;
  • 优化算法:使用 Adam 优化器进行训练。

📐 五、公式原理

⚙️ 六、参数设定

参数 说明
xmin 0 区间左端点
xmax π/2 区间右端点
N_interior 100 内部训练点数
numNeurons 20 每层神经元数
numEpochs 3000 训练轮数
learningRate 0.001 Adam 学习率
activation tanh 隐藏层激活函数

💻 七、运行环境

  • 软件:MATLAB(推荐 R2021a 或更高版本);
  • 工具箱:Deep Learning Toolbox;
  • 硬件:支持 CPU 或 GPU 训练(若可用)。

📊 输出结果

  • 解的对比图(解析解 vs PINN 预测);
  • 绝对误差图;
  • 训练损失曲线(总损失、边界损失、PDE 损失);
  • 最大绝对误差数值输出。

matlab 复制代码
 部分源码

.lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
%% 清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
x; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
% 生成训练数据
N_interior = 100;         % 内部点数量
x_interior = linspace(xmin, xmax, N_interior)';
x_boundary = [xmin; xmax]; % 边界点
% 转换为dlarray (通道×批次格式)
x_interior_dl = dlarray(x_interior', 'CB');  % 1×100
x_boundary_dl = dlarray(x_boundary', 'CB');  % 1×2

完整源码私信回复PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题,Matlab实现

相关推荐
AKAMAI4 分钟前
AI 边缘计算:决胜未来
人工智能·云计算·边缘计算
flex888811 分钟前
输入一个故事主题,使用大语言模型生成故事视频【视频中包含大模型生成的图片、故事内容,以及音频和字幕信息】
人工智能·语言模型·自然语言处理
TTGGGFF19 分钟前
人工智能:大语言模型或为死胡同?拆解AI发展的底层逻辑、争议与未来方向
大数据·人工智能·语言模型
张艾拉 Fun AI Everyday21 分钟前
从 ChatGPT 到 OpenEvidence:AI 医疗的正确打开方式
人工智能·chatgpt
mwq301231 小时前
位置编码的技术演进线路:从绝对到相对,再到几何一致性
人工智能
mwq301231 小时前
外推性-位置编码的阿喀琉斯之踵
人工智能
DP+GISer1 小时前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
boonya1 小时前
Langchain 和LangGraph 为何是AI智能体开发的核心技术
人工智能·langchain
元宇宙时间1 小时前
DID联盟:Web3数字主权基础设施的战略构建
人工智能·web3·区块链
点云SLAM2 小时前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配